期刊文献+

稀相气粒两相流的LES/FDF模型及其在平面尾迹两相流中的应用 被引量:1

LES/FDF simulation of particle dispersion in a gas-particle two phase plane wake flow
原文传递
导出
摘要 推导了气粒两相流中颗粒所见流场速度的滤波密度函数(FDF,filtered density function)输运方程,建立稀相气粒多相流的LES/FDF模型并对气粒两相平面尾迹流动中颗粒的湍流扩散进行了数值模拟研究.将模拟的结果与实验数据及不使用FDF模型得出的结果进行对比,说明LES/FDF模型能够更好地描述颗粒的空间扩散.
出处 《中国科学(E辑)》 CSCD 北大核心 2009年第9期1623-1630,共8页 Science in China(Series E)
基金 国家自然科学基金项目(批准号:10502044 10772162) 国家自然科学基金重点项目(批准号:50736006)资助
  • 相关文献

参考文献22

  • 1Crowe C T, Troutt T R, ChungJ N. Numerical models for two-phase turbulence flows. Annu Rev Fluid Mech, 1996, 28:11-43.
  • 2Yuu S, Yasukouchi M, Hirosawa Y, et al. Particle turbulent diffusion in a duct laden jet. AicheJ, 1978, 24(3): 509-519.
  • 3Lu Q Q, Fontaine J R, Aubertin G. Numerical study of the solid particle motion in grid-generated turbulence. Int J Heat Mass Tran, 1993, 36(1): 79-87.
  • 4Pope S B. The probability approach to modeling of turbulent reacting flows, Combust Flame, 1976, 27(3): 299-312.
  • 5Pope S B. PDF methods for turbulent reacting flows. Prog Energy Combust Sci, 1985, 11(2): 119-192.
  • 6Simonin O, Deutsch E, Minier J P. Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows. Appl Sci Res, 1993, 51(1-2): 275-283.
  • 7Derevich I V. Statistical modelling of mass transfer inturbulent two-phase dispersed flows-1, Model development. Int J Heat Mass Tran, 2000, 43(19): 3709- 3723.
  • 8Pozorski J, Minier J P. Probability density function modeling of dispersed two-phase turbulent flows. Phys Rev E, 1999, 59(1): 855-863.
  • 9Minier J P, Peirano E. The pdf approach to turbulent polydispersed two-phase flows. Phys Rep, 2001, 352(1-3): 1-214.
  • 10Yeh F, Lei U. On the motion of small particles in a homogeneous isotropic turbulent flow. Phys Fluids A, 1991, 3(11): 2571-2586.

同被引文献9

  • 1Eleonore R, Mathieu M, Olivier S, et al. Development of Euler-Euler LES approach for gas-particle turbulent jet flow. In: Proceedings of the ASME Fluids Enigneering Division Summer Conference. Miami: ASME, 2006. 1(A, B): 1663-1672.
  • 2Fairweather M, Yao J. Investigation of particle-laden flow in a straight duct using large eddy simulation. In: Proceedings of the 11th International Conference on Environmental Remediation and Radioactive Waste Management. Liverpool: ASME, 2009. 1119-1124.
  • 3Armenio V, Piomelli U, Fiorotto V. Effect of the subgrid scales on particles motion. Phys Fluids, 1999, 11(10): 3030-3042.
  • 4Pozorski J, Apte S V, Raman V. Filtered particle tracking for dispersed two-phase turbulent flows. In: Proceedings of the Summer Program 2004, Center for Turbulence Research. NASA, 2004. 329-340.
  • 5Fede P, Simonin O, Villedieu P, et al. Stochastic modeling of the turbulent subgrid fluid velocity along inertial particle trajectories. In: Proceedings of the Summer Program 2006, Center for Turbulence Research. NASA, 2006. 247-258.
  • 6Lei K B, Oshima N, Kase K, et al. A disperse-phase dynamic SGS coupling model for particle-laden turbulent flows. In: Proceedings of the 5th Joint AMSE/JSME Fluids Engineering Summer Conference, 2007. San Diego: ASME, 2007.1(A, B): 823-831.
  • 7Rybalko M, Loth E, Lankford D. LES sub-grid diffusion for Lagrangian particles. In: Proceedings of the ASME Fluids Engineering Division Summer Conference, 2008. Florida: ASME, 2008. 1(A, B): 147-157.
  • 8Yang Y, Crowe C T, Chung J N, et al. Experiments on particle dispersion in a plane wake. Int J Multiphase Flow, 2000, 26(10): 1583-1607.
  • 9Orlanski I. A simple boundary condition for unbounded hyperbolic flows. J Comput Phys, 1976, 21(3): 251-269.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部