期刊文献+

基于BP神经网络预报钢锭成分的软件开发 被引量:1

Software of Prediction Model Based on Artificial Neural Network for Steel Ingredients
下载PDF
导出
摘要 采用3层BP神经网络来预测炼钢成品的C、Si、Mn成分,根据炼钢的实际生产数据,选取铁水、废钢、供氧、吹氩、硅锰合金、增碳剂等28个因素作为输入变量,对输入参数进行归一化处理,采取附加动量项和自适应学习步长的措施,解决了BP神经网络局部收敛和学习时间过长的问题,提高了神经网络预报的准确率,并用VC++语言编写程序。软件经生产现场运用后,模型预测结果表明:在规定的误差内(C±0.02%、Si±0.05%、Mn±0.06%),预报命中率达到85%以上,证明了模型的有效性。 The prediction of C,Si,Mn components of finished steel was discussed in this paper which adopted 3 layers BP neural networks. According to the actual steel production data, the molten iron, scrap, oxygen, argon blowing, Silicon-manganese alloy, carbon etc 28 factors were selected as input variables. The variables were also normalized. Additional momentum and adaptive learning step were used to solve the BP neural network local convergence and the problem of long time to learn and improve the forecasting accuracy. The software was programed by C language and was applied in produce flied. The results showed that within the specified error (C ± 0.02%, Si ± 0.05%, Mn± 0.06%), the model reach the forecast rate over 85%.
出处 《微计算机信息》 2009年第25期207-209,共3页 Control & Automation
关键词 人工神经网络 BP算法 产品成分 artificial neural network(ANN) BP algorithm composition
  • 相关文献

参考文献14

  • 1MALINOV S, SHAW. Software Products for Modeling and Simulation in Materials Science . Computational Materials Science, 2003, 28: 179-198.
  • 2VENKATESH V, RACK HJ. A Neural Network Approach to Elevated Temperature Creep-fatigue Life Prediction . International Journal of Fatigue, 1999, 21 (3): 225-234.
  • 3PLEUNE T, CHOPRA O K. Using Artificial Neural Networks to Predict the Fatigue Life of Carbon and Low-alloy Steels . Nuclear Engineering and Design, 2000, 197 (1-2): 1-12.
  • 4沈清.神经网络应用技术[M].长沙:国防科技大学出版社,1993..
  • 5CAI Jian-ping, COTTIS R A, LYON S B. Phenomenological Modeling of Atmospheric Corrosion Using an Artificial Neural Network . Corrosion Science 1999, 41(10): 2001-2030.
  • 6PINTOS S, QUEIPON V, RINCON T, etal. Artificial Neural Network Modeling of Atmospheric Corrosion in the MICAT Project . Corrosion Science, 2000, 42(1): 35-52.
  • 7LICZNAR P, NEARINGM A. Artificial Neural Networks of Soil Erosion and Runoff Prediction at the Plot Scale . Catena, 2003, 51 (2): 89 -114.
  • 8蒋大军.基于人工神经网络的烧结矿FeO预报系统[J].烧结球团,2005,30(3):30-34. 被引量:11
  • 9肖伸平,吴敏,刘代飞.基于小波神经网络的高炉铁水含硅预报[J].有色金属,2005,57(2):106-110. 被引量:12
  • 10李果,李学仁,何秀然.改进ART1神经网络在航空发动机故障诊断中的应用[J].微计算机信息,2005,21(09S):156-158. 被引量:21

二级参考文献23

  • 1Zhang Qinghua, Benveniste A. Wavelet network [J]. IEEE Transon on Neural Networks, 1992 3(6): 889-898.
  • 2Pati Y C, Krishna P S. Analysis and synthesis of feedforward network using discrete affine wavelet transformations [J]. IEEE Transon on Neural Networks, 1993, 4(1): 73-85.
  • 3Deng Julong. Control problems of grey systems [J]. Systems and Control Letters, 1982, 1(5): 288-294.
  • 4邓守强.高炉炼铁技术[M].北京:冶金工业出版社,1990.55-57.
  • 5Michiharu HATANO, Yoshisuke MISAKA, Yoshiyuki MATOBA, et al. A mathematical model of blast furnace for control of hot metal temperature [J]. Transactions of the Iron& Steel Institute of Japan, 1982, (22): 524-528.
  • 6Michiharu HATANO, Yoshiyuki MATOBA, Koichi OTSUKA, et al. Automatic control of hot metal temperature of blast furnace [J]. Transactions of the Iron& Steel Institute of Japan, 1982,(22): 534-539.
  • 7Carroll S M, Dickinson B W. Construction of neural nets using the radon transform [A]// Neural Networks, 1989 [C]. IJCNN, International Joint Conference, 1989: 607-611.
  • 8SimonHaykin著 叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 9付凡 张宗麟.故障诊断的神经网络与专家系统方法[J].西北大学学报:自然科学版,2003,146:94-94.
  • 10GOMM J.Online Learning for Fault Classification Using an Adaptive Nemm-Fuz.zy Network[A].Proc of IFAC World Congress,1996.175-180.

共引文献88

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部