期刊文献+

Validity condition of separating dispersion of PCFs into material dispersion and geometrical dispersion

Validity condition of separating dispersion of PCFs into material dispersion and geometrical dispersion
原文传递
导出
摘要 When using normalized dispersion method for the dispersion design of photonic crystal fibers (PCFs), it is vital that the group velocity dispersion of PCF can be seen as the sum of geometrical dispersion and material dispersion. However, the error induced by this way of calculation will deteriorate the final results. Taking 5 ps/(km.nm) and 5% as absolute error and relative error limits, respectively, the structure parameter boundaries of PCFs about when separating total dispersion into geometrical and material components is valid are provided for wavelength shorter than 1700 nm. By using these two criteria together, it is adequate to evaluate the simulated dispersion of PCFs when normalized dispersion method is employed. When using normalized dispersion method for the dispersion design of photonic crystal fibers (PCFs), it is vital that the group velocity dispersion of PCF can be seen as the sum of geometrical dispersion and material dispersion. However, the error induced by this way of calculation will deteriorate the final results. Taking 5 ps/(km.nm) and 5% as absolute error and relative error limits, respectively, the structure parameter boundaries of PCFs about when separating total dispersion into geometrical and material components is valid are provided for wavelength shorter than 1700 nm. By using these two criteria together, it is adequate to evaluate the simulated dispersion of PCFs when normalized dispersion method is employed.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第9期768-770,共3页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(No.60637010) the Science Foundation of Yanshan University for the Excellent PhD Students.
关键词 Photonic crystal fibers Photonic crystals Photonic crystal fibers Photonic crystals
  • 相关文献

参考文献17

  • 1J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
  • 2T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, Chin. Opt. Lett. 6, 93 (2008).
  • 3K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, Opt. Express 11,843 (2003).
  • 4G. Renversez, B. Kuhlmey, and R. McPhedran, Opt. Lett. 28, 989 (2003).
  • 5T.-L. Wu and C.-H. Chao, IEEE Photon. Technol. Lett. 17, 67 (2005).
  • 6J. Wang, C. Jiang, W. Hu, and M. Gao, Opt. Laser Technol. 38, 169 (2006).
  • 7A. Huttunen and P. Torma, Opt. Express 13, 627 (2005).
  • 8S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, Opt. Express 13, 9516 (2005).
  • 9S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, Opt. Express 14, 3528 (2006).
  • 10M. Wu, D. Huang, H. Liu, and W. Tong, Chin. Opt. Lett. 6, 22 (2008).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部