期刊文献+

A liquid crystal thermography calibration with true color image processing 被引量:1

A liquid crystal thermography calibration with true color image processing
原文传递
导出
摘要 Liquid crystal thermography is a high-resolution, non-intrusive optical technique for full-field temperature measurement. We present the detailed calibration data for the thermochromic liquid crystal (TLC) with a useful range of 41-60 ℃. The calibration is done with true color image processing by using an isothermal calibrator. The hue-temperature curve of the TLC is obtained, and the measurement uncertainty is analyzed. Combined with the image noise reduction technique of a 5×5 median filter, the measurement accuracy of the liquid crystal thermography can be significantly improved by approximately 57.1%. Liquid crystal thermography is a high-resolution, non-intrusive optical technique for full-field temperature measurement. We present the detailed calibration data for the thermochromic liquid crystal (TLC) with a useful range of 41-60 ℃. The calibration is done with true color image processing by using an isothermal calibrator. The hue-temperature curve of the TLC is obtained, and the measurement uncertainty is analyzed. Combined with the image noise reduction technique of a 5×5 median filter, the measurement accuracy of the liquid crystal thermography can be significantly improved by approximately 57.1%.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第9期795-797,共3页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.50806045.
关键词 CALIBRATION Dendrites (metallography) Imaging systems Liquid crystals Optical data processing Remote sensing Thermography (imaging) Thermography (temperature measurement) Uncertainty analysis Calibration Dendrites (metallography) Imaging systems Liquid crystals Optical data processing Remote sensing Thermography (imaging) Thermography (temperature measurement) Uncertainty analysis
  • 相关文献

参考文献14

  • 1J. Stasiek, Heat Mass Transfer 33, 27 (1997).
  • 2P. T. Ireland and T. V. Jones, Meas. Sci. Technol. 11, 969 (2000).
  • 3J. Stasiek, A. Stasiek, M. Jewartowski, and M. W. Collins, Opt. Laser Technol. 38, 243 (2006).
  • 4P. T. Ireland, A. J. Neely, D. R. H. Gillespie, and A. J. Robertson, Int. J. Heat and Fluid Flow 20, 355 (1999).
  • 5J. Baughn, Int. J. Heat and Fluid Flow 16, 365 (1995).
  • 6M. Behle, K. Schulz, W. Leiner, and M. Fiebig, Appl. Sci. Res. 56, 113 (1996).
  • 7J. L. Hay and D. K. Hollingsworth, Exp. Thermal Fluid Sci. 18, 251 (1998).
  • 8J. W. Baughn, M. R. Anderson, J. E. Mayhew, and J. D. Wolf, J. Heat Transfer 121, 1067 (1999).
  • 9D. R. Sabatino, T. J. Praisner, and C. R. Smith, Exp. Fluids 28, 497 (2000).
  • 10C. J. Elkins, J. Fessler, and J. K. Eaton, J. Heat Transfer 123, 604 (2001).

同被引文献10

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部