期刊文献+

High speed and wide temperature range uncooled 1.3-μm ridge waveguide DFB lasers 被引量:1

High speed and wide temperature range uncooled 1.3-μm ridge waveguide DFB lasers
原文传递
导出
摘要 A 1.3-μm wavelength vertical-mesa ridge waveguide mulitple-quantum-well (MQW) distributed feedback (DFB) laser with high directly modulated bandwidth and wide operation temperature range is reported. With the optimization of the strained-layer MQWs in the active region, the surrounding graded-index separated-confinement-heterostructure waveguide layers, together with the optimization of the detuning and coupling coefficient of the DFB grating, high directly modulation bandwidth of 16 GHz at room temperature and wide working temperature range from -40 to 85 ℃ are obtained. The mean time to failure (MTTF) is estimated to be over 2×10^6 h. The device is suitable as light source of high-bit-rate optical transmitters with small size and reduced cost. A 1.3-μm wavelength vertical-mesa ridge waveguide mulitple-quantum-well (MQW) distributed feedback (DFB) laser with high directly modulated bandwidth and wide operation temperature range is reported. With the optimization of the strained-layer MQWs in the active region, the surrounding graded-index separated-confinement-heterostructure waveguide layers, together with the optimization of the detuning and coupling coefficient of the DFB grating, high directly modulation bandwidth of 16 GHz at room temperature and wide working temperature range from -40 to 85 ℃ are obtained. The mean time to failure (MTTF) is estimated to be over 2×10^6 h. The device is suitable as light source of high-bit-rate optical transmitters with small size and reduced cost.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第9期809-811,共3页 中国光学快报(英文版)
关键词 LIGHT Light sources Semiconductor quantum wells Light Light sources Semiconductor quantum wells
  • 相关文献

参考文献9

  • 1T. R. Chen, J. Ungar, X. L. Yeh, and N. Bar-Chaim, IEEE Photon. Technol. Lett. 7, 458 (1995).
  • 2K. Czotscher, E. C. Larkins, S. Weisser, W. Benz, J. Daleiden, J. Fleissner, M. Maier, J. D. Ralston, and J. Rosenzweig, IEEE Photon. Technol. Lett. 9, 575 (1997).
  • 3C. Kazmierski, A. Ougazzaden, D. Robein, D. Mathoorasing, M. Blez, and A. Mircea, Electron. Lett. 29, 1290 (1993).
  • 4Y. Duan, @. Lin, C. Wang, F. Chong, and X. Ma, Chin. Opt. Lett. 5, 585 (2007).
  • 5D. Wang, N. Zhou, J. Zhang, Y. Liu, N. Zhu, and L. Li, Chin. Opt. Lett. 3, 466 (2005).
  • 6D. Wang, N. Zhou, J. Zhang, R. Zhang, X. Huang, L. Li, and J. Chang, Proc. SPIE 6020, 60201U (2005).
  • 7N. Yamamoto, S. Seki, Y. Noguchi, and S. Kondo, IEEE Photon. Technol. Lett. 12, 137 (2000).
  • 8J. C. L. Yong, J. M. Rorison, R. VI Penty, and I. H. White, in Proceedings of CLEO 2001 CThL59 (2001).
  • 9H. Wada, K. Takemasa, T. Munakata, M. Kobayashi, and T. Kamijoh, IEEE J. Sel. Top. Quantum Electron. 5, 420 (1999).

同被引文献2

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部