期刊文献+

Plasma channel formed by ultraviolet laser pulses at 193 nm in air

Plasma channel formed by ultraviolet laser pulses at 193 nm in air
原文传递
导出
摘要 The propagation of picosecond deep ultraviolet laser pulse at wavelength of 193 nm in air is numerically investigated. Long plasma channel can be formed due to the competition between Kerr self-focusing and ionization induced defocusing. The plasma channel with electron density of above 10^13/cm^3 can be formed over 70 m by 50-ps, 20-mJ laser pulses. The fluctuation of laser intensity and electron density inside ultraviolet (UV) plasma channel is significantly lower UV laser by air is considered in the simulation and it the limit of the length of plasma channel. than that of infrared pulse. The linear absorption of is shown that the linear absorption is important for the limit of the length of plasma channel. The propagation of picosecond deep ultraviolet laser pulse at wavelength of 193 nm in air is numerically investigated. Long plasma channel can be formed due to the competition between Kerr self-focusing and ionization induced defocusing. The plasma channel with electron density of above 10^13/cm^3 can be formed over 70 m by 50-ps, 20-mJ laser pulses. The fluctuation of laser intensity and electron density inside ultraviolet (UV) plasma channel is significantly lower UV laser by air is considered in the simulation and it the limit of the length of plasma channel. than that of infrared pulse. The linear absorption of is shown that the linear absorption is important for the limit of the length of plasma channel.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第9期865-868,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.60621063,10634020,10734130,and 10521002) the National "973" Program of China(Nos.2007CB815101 and 2006CB806007).
关键词 Absorption Carrier concentration Electron density measurement ELECTRONS Laser pulses LASERS PLASMAS Absorption Carrier concentration Electron density measurement Electrons Laser pulses Lasers Plasmas
  • 相关文献

参考文献24

  • 1A. Couairon and A. Mysyrowicz, Physics Reports 441, 47 (2007).
  • 2J. Kasparian and J.-P. Wolf, Opt. Express 16, 466 (2008).
  • 3L. Berge and S. Skupin, Phys. Rev. Lett. 100, 113902 (2008).
  • 4A. Couairon and L. BergS, Phys. Rev. Lett. 88, 135003 (2002).
  • 5X. M. Zhao, J.-C. Diels, C. Y. Wang, and J. M. Elizondo, IEEE J. Quantum Electron. 31, 599 (1995).
  • 6J. Kasparian, R. Ackermann, Y.-B. Andre, G. Mechain, G. Mejean, B. Prade, P. Rohwetter, E. Salmon, K. Stelmaszczyk, J. Yu, A. Mysyrowicz, R. Sauerbrey, L. WSste, and J.-P. Wolf, Opt. Express 16, 5757 (2008).
  • 7B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, and H. Pepin, Phys. Plasmas 6, 1615 (1999).
  • 8W. Liu, Q. Luo, and S. L. Chin, Chin. Opt. Lett. 1, 56 (2003).
  • 9L. Ding, J. Song, Z. Sun, L. Deng, and Z. Wang, Chin. Opt. Lett. 4, 617 (2006).
  • 10T. A. Niday, E. M. Wright, M. Kolesik, and J. V. Moloney, Phys. Rev. E 72, 016618 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部