期刊文献+

一类多参数分形插值曲面迭代函数系 被引量:4

A class of iterated function systems of fractal interpolation surfaces with multiparameters
下载PDF
导出
摘要 在三维空间中,构造了一类多参数的迭代函数系,与传统的仅含有一组自由参数的迭代函数系相比,所构造的迭代函数系具有更大的灵活性.在一定的条件下,证明了这类迭代函数系的吸引子是经过给定插值点集的分形插值曲面.讨论了多参数的分形插值曲面关于参数的连续依赖性,给出一个具体例子,通过数值模拟,直观地显示了分形插值曲面在不同参数下的形态.论文的研究为利用多参数分形插值曲面拟合粗糙曲面和非平稳数据提供有价值的理论基础. In the three-dimensional space, we constructed a class of iterated function systems (IFSs) with muitiparameters. Compared to the traditional IFSs, which have only one family of free parameters, the constructed 1FSs have more flexibility. Under certain conditions, we proved that the attractors of those IFSs were the fractal interpolation surfaces (FISs) passing through the given interpolation data. We investigated the continuous dependency of the FISs with respected to muhiparameters, and gave a specific example for FISs, which intuitively showed the configurations under different parameters. The results of the work provided a theoretical basis for the fitting of rough surfaces and non stable data by using FISs with multiparameters.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2009年第5期17-20,共4页 Journal of Anhui University(Natural Science Edition)
基金 江苏省高校自然科学基金资助项目(07KJD110065) 南京财经大学学位与研究生教育基金资助项目(Y0813)
关键词 迭代函数系 吸引子 多参数 分形插值曲面 iterated function system attractor muItiparameters fractal interpolation surface
  • 相关文献

参考文献7

  • 1Barnsley M F. Fractal functions and interpolation[ J]. Constr Approx, 1986,2:303 - 329.
  • 2Feng Z, Xie H. On stability of fractal interpolation [ J ]. Fractals, 1998,6 (3) :269 -273.
  • 3Ruan H J, Sha Z, Su W Y. Counterexamptes in parameter identification problem of the fractal interpolation functions [ J ]. J Approx Theory ,2003,122 : 121 - 128.
  • 4Wang H Y, Li X J. Perturbation error analysis for fractal interpolation functions and their moments [ J ]. Appl Math Lett,2008,21:441 -446.
  • 5Dalla L. Bivariate fractal interpolation functions on grids [ J ]. Fractals ,2002,10( 1 ) :53 -58.
  • 6Wang H Y. On smoothness for a class of fractal interpolation surfaces [ J ]. Fractals ,2006,14 (3) :223 -230.
  • 7王宏勇.一类具有双参数的迭代函数系及其吸引子[J].厦门大学学报(自然科学版),2007,46(2):157-160. 被引量:11

二级参考文献2

共引文献10

同被引文献22

  • 1冯志刚,王磊.分形插值函数的δ-变差的性质[J].江苏大学学报(自然科学版),2005,26(1):49-52. 被引量:15
  • 2孙洪泉.分形插值曲面的MATLAB程序[J].苏州科技学院学报(工程技术版),2006,19(4):18-21. 被引量:8
  • 3Barnsley M F.Fractal functions and interpolation[J].Constr Approx,1986,2:303-329.
  • 4Barnsley M F.Fractal Everywhere[M].New York:Academic Press,1988.
  • 5Mazel D S,Hayes M H.Using iterated function systems to model discrete sequences[J].IEEE Trans Signal Process,1992,40(7):1724-1734.
  • 6Zhao N.Construction and application of fractalinterpolation surfaces[J].Visual Computer,1996,12:132-146.
  • 7Dalla L.Bivariate fractal interpolation functions on grids[J].Fractals,2002,10(1):53-58.
  • 8Wang H Y.On smoothness for a class of fractal interpolation surfaces[J].Fractals,2006,14(3):223-230.
  • 9Wang H Y,Li X J.Perturbation error analysis for fractal interpolation functions and their moments[J].Appl Math Lett,2008,21:441-446.
  • 10Dalla L,Drakopoulos V.On the parameter identification problem in the plane and the polar fractal interpolation functions[J].J Approx Theory,1999,101:289-302.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部