期刊文献+

扩充编码符号的EZW改进算法 被引量:2

Improved EZW algorithm with extended coding symbol
下载PDF
导出
摘要 为了提高EZW算法的性能,分析发现EZW算法主扫描编码对最高频子带中不重要系数的编码存在冗余,且当重要系数的所有子孙系数都是不重要系数时的编码存在冗余.据此提出了扩充编码符号的EZW改进算法,用最高频子带的坐标作为限制条件来减少不重要系数的编码冗余;通过扩充编码符号和赋予原始EZW算法的4个编码符号新的适用范围的方案来减小第二种编码冗余.实验结果表明,本文算法使峰值信噪比提高0.9~2.3dB,从而证实了本文改进算法的有效性. To improve the performance of EZW algorithm, the encoding redundancy of dominant pass of embedded zerotree wavelet (EZW) algorithm is discussed in this paper. One redundancy exists in the encoding of insignificant coefficients in the subband at the highest frequency. Another redundancy oceurrs when all the descendant coefficients of one significant coefficient are insignificant. To reduce the redundancy, the improved EZW algorithm with extended coding symbol is presented. Using the coordinates of subband at the highest frequency as the limitation conditions, the first kind of redundancy is decreased. The second kind of redundancy can be reduced using the extension of coding symbol, and the new definition of four original coding symbols is given. Experiments show that the improved EZW algorithm can increase the peak signal to noise radio (PSNR) of image compression by 0. 9 -2. 3 dB, which proves the effectiveness of improved EZW algorithm.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第8期89-93,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60875013 60475011)
关键词 图像压缩 改进算法 EZW 编码符号 image compression improved algorithm EZW coding symbol
  • 相关文献

参考文献10

  • 1MALLAT S. A theory for muhiresolution signal decomposition : the wavelet representation [ J ]. IEEE Transaction on PAMI, 1989, 11(7) : 674 -693.
  • 2VETTERLI M, HERLEY C. Wavelets and filter banks: theory and design [ J ]. IEEE Transaction on Signal Processing, 1992, 40 (9) : 2207 - 2232.
  • 3SWELDENS W. The lifting scheme: a construction of second generation wavelets [ J ]. SIAM Journal on Mathematical Analysis, 1998, 29(2) : 511 -546.
  • 4DAUBECHIES I, SWELDENS W. Factoring wavelet transforms into lifting steps [ J ]. The Journal of Fourier Analysis and Applications, 1998, 4 ( 3 ) : 245 - 267.
  • 5CHRISTOPOULOS C, SKODRAS A, EBRAHIMI T. The JPEG2000 still image coding system: an overview [J]. IEEE Transaction on Consumer Electronics, 2000, 46(4) : 1103 - 1127.
  • 6SHAPIRO J M. Embedded image coding using zerotrees of wavelet coefficients [ J ]. IEEE Transaction on Signal Processing 1993, 41 (12) : 3445 -3462.
  • 7SAID A, PEARLMAN W A. A new, fast and efficient image codec based on set partitioning in hierarchical trees [ J ]. IEEE Transaction on Circuits and Systems for Video Technology, 1996, 6 ( 3 ) : 243 - 250.
  • 8PENG K, KIEFFER J C. Embedded image compression based on wavelet pixel classification and sorting [ J ]. IEEE Transaction on Image Processing, 2004, 13(8) : 1011 -1017.
  • 9丁绪星,朱日宏,李建欣.基于整数小波变换和改进嵌入零树编码的图像压缩[J].电子与信息学报,2004,26(7):1064-1069. 被引量:5
  • 10王向阳,杨红颖.一种改进的嵌入零树小波图像编码算法[J].计算机研究与发展,2002,39(6):737-742. 被引量:15

二级参考文献25

  • 1[1]M Antonini, M Barlaud, P Mathieu et al. Image coding using wavelet transform. IEEE Trans on Image Processing, 1992, 1(2) : 205~220
  • 2[2]A B Edrardo et al. A successive approximation vector quantizer for wavelet transform image coding. IEEE Trans on Image Processing, 1996, 5(2): 299~309
  • 3[3]R Rinaldo, G Calvagno. Hibird vector quantization for multiresolution image coding. IEEE Trans on Image Processing, 1997, 6(5): 753~758
  • 4[4]J M Shapiro. Embedding image coding using zerotrees of wavelet coefficients. IEEE Trans on Signal Processing, 1993,41(12): 3445~3462
  • 5[5]A Said, W A Pearlman. A new fast and efficient image codec based on set partitioning in hierarchical processing. IEEE Trans on Circuits and Video Technology, 1996, 6(3): 243~250
  • 6[6]A Zandi, J D Allen, E L Schwarts et al. CREW: Compression with reversible embedded wavelet. In: IEEE Data Compression Conf. Snowbird Utah, 1995. 212~221
  • 7[7]C Chrysafis, A Ortega. Efficient context-based entropy coding for lossy wavelet image compression. IEEE Data Compression Conf'97. Snowbird Utah, 1997. 241~250
  • 8[8]A Said, W A Pearlman. An image multiresolution representation for lossless and lossy compression. IEEE Trans on Image Processing, 1996, 5(9): 1303~1310
  • 9Said A, Pearlman W A. An image multiresolution representation for lossless and lossy compression. IEEE Trans. on Image Processing, 1996, 5(9): 1303-1310.
  • 10Grangetto M, Magli E, Olmo G. Optimization and implementation of the integer wavelet transform for image coding. IEEE Trans. on Image Processing, 2002, IP-11(6): 596-604.

共引文献16

同被引文献19

  • 1张煜东,吴乐南.基于分割的彩色图像编码[J].中国科学(F辑:信息科学),2009,39(4):405-415. 被引量:5
  • 2张煜东,吴乐南.基于SPCNN和Nagao滤波的图像去噪[J].中国科学(F辑:信息科学),2009,39(6):598-607. 被引量:6
  • 3马文波,赵保军,毛二可.基于图像先验知识的快速EZW算法研究[J].激光与红外,2007,37(5):485-489. 被引量:3
  • 4MALLAT S. A theory for multiresolution signal decomposition : The wavelet representation [ J ]. IEEE Transaction on PAMI, 1989, 11 (7) : 674 - 693.
  • 5VETTERLI M, HERLEY C. Wavelets and filter banks: Theory and design [ J ]. IEEE Transaction on Signal Processing, 1992, 40(9) : 2207 -2232.
  • 6SWELDENS W. The lifting scheme: A construction of second generation wavelets [ J]. SIAM Journal on Mathematical Analysis, 1998, 29(2): 511 -546.
  • 7DAUBECHIES I, SWELDENS W. Factoring wavelet transforms into lifting steps [J]. The Journal of Fourier Analysis and Applications, 1998, 4 (3) : 245 - 267.
  • 8CHRISTOPOULOS C, SKODRAS A, EBRAHIMI T. The JPEG2000 still image coding system: An overview [ J]. IEEE Transaction on Consumer Electronics, 2000, 46(4) : 1103 - 1127.
  • 9SHAPIRO J M. Embedded image coding using zerotrees of wavelet coefficients [ J]. IEEE Transactions on Signal Processing, 1993, 41 (12) : 3445 - 3462.
  • 10TOHUMOGLU G, SEZGIN K E. ECG signal compression by multi-iteration EZW coding for different wavelets and thresholds [ J ]. Computers in Biology and Medicine, 2007, 37(2) : 173 - 182.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部