期刊文献+

表观遗传学与非酒精性脂肪肝及相关代谢紊乱 被引量:1

Epigenetics in the pathogenesis of nonalcoholic fatty liver disease and the related metabolic disorders
原文传递
导出
摘要 随着生活方式的改变,非酒精性脂肪肝(NAFLD)的发生率逐渐升高,且肝脏脂肪异位沉积会引起胰岛素抵抗,进而促进2型糖尿病的发生,其发病机制目前尚不明确。表观遗传学受环境、饮食等因素的影响,对基因表达具有调控作用。研究表明,细胞色素C亚单位7A多肽1(COXTA1)、过氧化物酶体增殖物活化受体γ共激活因子-1α(PGC-1α)及烟酰胺腺嘌呤二核苷酸脱氢酶(NDUFB)6和葡萄糖激酶启动子CpG位点的高度甲基化可导致相应基因的表达水平下降,而这些基因的表达量下调与胰岛素抵抗的发生密切相关。同时研究报道在NAFLD存在多种microRNA异常表达,因此基因的表观遗传修饰如DNA甲基化、组蛋白修饰及microRNA在NAFLD及糖脂代谢异常的发生机制中起重要作用。 Nonalcoholic fatty liver disease (NAFLD) is an increasingly recognized clinical syndrome,which is tightly associated with hepatic insulin resistance and type 2 diabetes. The pathogenesis of NAFLD and the related metabolic disorders remains unclear. Gene levels are regulated by epigenetic modification,which is affected by environmental factors and different diets. Promoters of COX7A1, PGC-1a and NDUFB6,indicated by previous studies, are hypermethylated in skeletal muscle or islet from patients with type 2 diabetes. And the reduction of expression of these genes play crucial roles in the pathogenesis of insulin resistance. Moreover,microRNAs expression are dysregulated in NAFLD,which are involved in metabolic regulation of glucose homeostasis and lipid metabolism. Thus, epigenetic modification plays a critical role in the pathogensis of NAFLD and the related glucose and lipid metabolism disorders.
作者 常薪霞 高鑫
出处 《国际内分泌代谢杂志》 2009年第5期338-341,共4页 International Journal of Endocrinology and Metabolism
基金 上海市科学技术发展基金创新行动计划(07JC14011)
关键词 非酒精性脂肪肝 胰岛素抵抗 表观遗传 DNA甲基化 MICRORNA Nonalcoholic fatty liver disease Insulin resistance Epigenetics DNA methylation MicroRNA
  • 相关文献

参考文献28

  • 1Chiappini F, Barrier A, Saffroy R, et al. Exploration of global gene expression in human liver steatosis by high-density oligonueleotide mieroarray. Lab Invest, 2006,86 : 154-165.
  • 2Yoneda M,Hotla K,Nozaki Y ,et al. Assoeiation between PPARGCIA polymorphisms and the occurrence of nonalcoholic fatty liver disease ( NAFLD). BMC Gastroenterol,2008 ,8 :27.
  • 3Gambino R, Cassader M, Pagano G, et al. Polymorphism in microsomal triglyceride transfer protein: A link between liver disease and atherogenic postprandial lipid profile in NASH? Hepatology, 2007,45:1097-1107.
  • 4Rodriguez-Hernandez H, Gonzalez JL, Ma'rquez-Ramirez MD, et al. Risk factors associated with nonalcoholic fatty liver disease and its relationship with the hepatic histological changes. Eur J Gastroenlerol Hepatol, 2008,20 : 399-403.
  • 5Shibala M, Tashiro M, Kihara Y, et al. Nonalcoholic tatty liver disease is a risk factor for type 2 diabetes in middle-aged Japancse men. Diabetes Care,2007,30:2940-2944.
  • 6Petersen KF, Oral EA, Dufour S, et al. Reversal of nonalcoholic hepatic steatosis,hepatic insulin resistance,and hyperglycemia by, moderate weight reduetion in patients with type 2 diabetes. Diabetes,2005,54 : 603-608.
  • 7Savage DB, Choi CS, Samuel VT, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest, 2006,116 : 817-824.
  • 8Musso G, Birolig G, Gambino R, et al. Should nonalcoholic fatty liver disease be included in the definition of metabolic syndrome? Diabetes Care,2008,31:562-568.
  • 9Kohjima M, Enjoji M, Higuchi N, et al. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholie fatty liver disease, Int J Mol Med ,2007,20:351-358.
  • 10Samuel VT, Liu ZX, Wang A, et al. Inhibition of protein kinase Cs prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest ,2007,117:739-745.

二级参考文献34

  • 1Es teller M. Dormant hypermethylated tumor suppressor genes:questions and answers[J]. J Pathol,2005,205(2):172 -180.
  • 2Nan X, Ng H H, Johnson C A, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex [ J ]. Nature, 1998,393 (6683):386 - 389.
  • 3Prokhortchouk E, Hendrich B. Methyl - CpG binding proteins and cancer: are MeCpGs more important than MBDs[J]. Oncogene,2002,21 ( 35 ):5394 - 5399.
  • 4Nan X, Tate P, Li E, et al. DNA Methylation specifies chromosomal localization of MeCP2 [J]. Mol Cell Biol, 1996,16( 1 ):414-421.
  • 5Ng H H, Jeppesen P, Bird A. Active repression of methylated genes by the chromosomal protein MBD1 [ J ]. Mol Cell Biol,2000,20(4):1394 - 1406.
  • 6Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl - CpG binding proteins[ J]. Mol Cell Biol,1998,18( 11 ):6538 -6547.
  • 7Zhang Y, Ng H H, Erdjument-Bromage H, et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation [J]. Genes Dev, 1999, 13( 15 ) : 1924 - 1935.
  • 8Prokhortchouk A, Hendrich B, Jorgensen H, et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor[J]. Genes Dev ,2001,15 ( 13 ) : 1613 - 1618.
  • 9Zhu B, Zheng Y, Angliker H, et al. 5-methylcytosine DNA glycosylase activity is also present in the human MBD4 ( G/T mismatch glycosylase) and in a related avian sequence [ J ]. Nucleic Acids Res,2000,28(21):4157 -4165.
  • 10Hendrich B, Hardeland U, Ng H H, et al. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites [ J ]. Nature, 1999,401 (6750) :301 - 304.

共引文献15

同被引文献10

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部