期刊文献+

基于扩展卡尔曼滤波的机动目标航迹跟踪 被引量:4

Maneuvering Target Tracking based on Extended Kalman Filter
下载PDF
导出
摘要 针对高速飞行目标航迹跟踪问题,进行了扩展卡尔曼滤波的曲线拟和仿真试验研究。首先建立目标跟踪的数学模型,确定了系统对应的参数及状态方程,进而将线性卡尔曼滤波器进行扩展,将函数形式的滤波模型在函数自变量估计值附近进行泰勒级数展开,求导获得相应雅克比矩阵,在获得观测及系统误差的基础上,得到针对此问题的扩展卡尔曼滤波方程。仿真结果表明该方法的有效性。 The curve fitting and simulation research of extended Kalman filter aiming at the problem of high-speed flight target tracking is studied. Mathematical model of target tracking, the parameter and state equation of system are established thus linear Kalman filter is extended, filter model is expanded in form of Taylor series near the estimated value of independent variable of function and the Jacques matrix is attained by derivation. The function of extended Kalman filter about this problem is acquired based on obtained observation and system systematic errors. The simulation results illustrate its effectiveness.
出处 《火力与指挥控制》 CSCD 北大核心 2009年第9期14-17,共4页 Fire Control & Command Control
基金 国家自然科学基金(60634030) 兵器预研支撑基金项目(62301110408)
关键词 扩展卡尔曼滤波 目标跟踪 泰勒级数 线性化 extended Kalman filter,target tracking,Taylor series ,linearization
  • 相关文献

参考文献7

  • 1Porat B, Friedlander B. The Exact Cramer-Rao Bound for Gaussian Autoregressive Processes [J]. IEEETrans. on AES, 1987, 23(7):537-541.
  • 2Lee H B. A Novel Procedure for Assessing the Accuracy of Hyperbolic Multilateration Systems [J]. IEEE Trans. onAES, 1995,31(11):2-15.
  • 3Feder M, Weinstein E. Parameter Estimation of Superimposed Signals Using the EM Algorithm[J]. IEEE Trans. on ASSP, 1998,36(4)..477-489.
  • 4Stoica P, Moses R L, Fried B. Maximum Likelihood Estimation of the Parameters of Multiple Sinusiods from Noisy Measurements [J]. IEEE Trans. on ASSP, 1999,37(3):378-392.
  • 5Haykin S. Adaptive Filter Theory. Prentice-Hall [M]. Englewood Cliffs, N. J, 1991.
  • 6Steven M Kay. Fundamentals of Statistical Signal Processing[M]. Macmillan, New York, 2002.
  • 7Knight W S,Pridham R G,Kay S M. Digital Signal Processing for Sonar. Proc [J]. IEEE, 1991, 69 (11 ) : 1451-1506.

同被引文献21

  • 1吴富梅.多种权函数固定临界值与可变临界值抗差估计的比较[J].测绘工程,2006,15(3):19-22. 被引量:8
  • 2HORN,R A,JONSON C R.Matrix Analysis[M].USA:Cambridge University Press.1985.
  • 3Farina A, Ristic B, Benvenuti D. Tracking a ballistic target : comparison of several nonlinear filters [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 ( 3 ) : 854-867.
  • 4Ristic B, Farina A, Benvenuti D, et al. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry [ J]. IEE Proceedings: Ra- dar, Sonar and Navigation, 2003, 150(2) : 65-70.
  • 5Ienkaran Arasaratnam, Simon Haykin. Cubature Kalman smoothers [J]. Automatiea, 2011 , 47: 2245-2250.
  • 6Bar-shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation [ M ]. John Wi- ley & Sons, 2001.
  • 7Julier S, Uhlmann J, Durrant-white H F. A new method for nonlinear transformation of means and eovariances in filters and estimators [ J]. IEEE Transactions on Auto- matic Control, 2000, 45(3): 477-482.
  • 8Arasaratnam I, Haykin S, Elliott R J. Discrete-time non- linear filtering algorithms using Gauss-Hermite quadrature [J] // Proceeding of the IEEE, 2007, 95 (5) : 953- 977.
  • 9Arasaratnam I, Haykin S. Cubature Kalman filters [ J].IEEE Transactions on Automatic Control, 2009, 54 (6) : 1254-1269.
  • 10赵长胜,陶本藻.有色噪声作用下的卡尔曼滤波[J].武汉大学学报(信息科学版),2008,33(2):180-182. 被引量:23

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部