期刊文献+

基于偏最小二乘特征提取的支持向量机回归算法 被引量:3

A Support Vector Machine Regression Algorithm based on Partial Least Squares Feature Extraction
下载PDF
导出
摘要 为了提高SVM的建模质量,简化建模难度,提出了PLS-SVM组合回归建模方法。该方法通过PLS对样本数据进行降维、去噪以及消除共线性处理后,再进行SVM回归建模。不仅保持了SVM良好的模型性能,而且使SVM具备特征提取功能。实验结果表明,该方法是可行的,采用此法构建的SVM模型,泛化性能优于没有特征提取的SVM。 A hybrid PLS-SVM method is proposed to improve the SVM model quality and reduce the modeling difficulty. Firstly, reduced the dimensions of correlated inputs and denoised for sample by PLS, then construct the SVM model. The PLS-SVM not only maintains the SVM good performance but also has feature extraction function. The experiment results show that this method is workable well and the generalization ability of SVM with feature extraction using PLS is much better than that without feature extraction.
出处 《火力与指挥控制》 CSCD 北大核心 2009年第9期114-117,共4页 Fire Control & Command Control
关键词 特征提取 支持向量机 偏最小二乘 主成分 feature extraction,support vector machines ,partial least square,principal component
  • 相关文献

参考文献8

  • 1Vapnik V. Statistical Learning Theory[M]. New York: Wiley, 1998.
  • 2Cortes C,Vapnik V. Support Vector Networks[J]. Machine Learning, 1995 (20) : 273-297.
  • 3Matthews B, Williams R. Partial Least Squares for Discrimination [J ]. J of Chemometrics, 2003 ( 17 ):166-173.
  • 4Galadi P, Kowalski B R. Partial Least Squares Regression.. A tutorial [J ]. Analytica Chimica Acta,1986,185(1):1-17.
  • 5Wold H. Partial Least Squares in Encyclopedis of Statistical Sciences [ M ]. New York: John Wiley&Ston, 1985.
  • 6Cao L J, Chua K S, Chong W K, et al. A Comparison of PCA, KPCA and ICA for Dimensionality Reduction in Support Vector Machine[J]. Neurocomputing, 2003(55) :321-336.
  • 7Qin S J, McAvoy T J. Nonlinear PLS Modeling using Neural Networks [J]. Computers Chem. Engng, 1992,16 (4) : 379-391.
  • 8Smola A J, Scholkopf B. A Tutorial on Support Vector Regression [R]. Technical Report, TR1998- 030. London : Royal Holloway College, 1998.

同被引文献43

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部