期刊文献+

齿轮测量的粒子滤波方法

Measurement of Gear Based on Particle Filter
下载PDF
导出
摘要 提出一种基于粒子滤波的齿轮检测新方法。提出了核概率区域抽样方法,避免了抽样不全面和样本特征不全面的问题;通过对每个样本(粒子)赋予相应的权值来表示样本准确度以表征所测参数的分布,进而由分布求得具体测量值。该方法不受测量数据实际分布的限制,适用于非线性、非平稳、非高斯分布情形的测量。实验结果表明,所提方法有效而稳健,可应用于不同形状、不同大小的齿轮的测量。 This paper presented a particle filtering algorithm for measurement of gears. First, a sampling method based on nucleus probability function was proposed to avoid sampling or characteristics of samples deficientiy. For scaling nicety of samples each sample was weighted, so as to take distribution of measured parameters, which can be obtained from the distribution. The proposed method is not restricted to any contribution. It can effectively deal with non--linear, non--placidity and non--Gaussian problem. Experimental results show that the proposed algorithm is effective and robust for measurement of gears, and can be applied to various gears with different sizes and shapes.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第18期2178-2181,共4页 China Mechanical Engineering
关键词 齿轮测量 非线性测量 粒子滤波 核概率分布 gear measurement non- linear measurement particle filter nucleus probability distribution
  • 相关文献

参考文献7

  • 1Wang W J, McFadden P D. Application of Wavelets to Gearbox Vibration Signals for Fault Detection [J]. Journal of Sound and Vibration, 1996,192 (5) : 927-939.
  • 2Wang W J,McFadden P D. Application of Orthogonal Wavelets to Early Gear Damage Detection[J]. Mechanical Systems and Signal Processing, 1995,9 (5) :497-507.
  • 3Jeffrey C, William J. On the Existence of Discrete Wigner Distributions [J]. IEEE Signal Processing Letters, 1999,6(12) : 304-306.
  • 4董建华,顾汉明,张星.几种时频分析方法的比较及应用[J].工程地球物理学报,2007,4(4):312-316. 被引量:51
  • 5胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 6杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 7Kong A, Liu J S, Wong W H. Sequential Imputations and Bayesian Missing Data Problems[J]. Journal of the American Statistical Association, 1994, 89: 278-288.

二级参考文献82

  • 1付丽华,李宏伟,张猛.基于小波变换的复杂噪声背景中谐波恢复方法[J].工程地球物理学报,2005,2(1):22-28. 被引量:10
  • 2[1]Hlawatsch F,G F Boudreaux-Bartels.Linear and quadratic time-frequency signal representations[J].IEEE Signal Processing,1992,9(2):21~67.
  • 3[4]Gabor D.Theory of Communication[J].Journal of the IEEE.1946,93:429~497.
  • 4[6]Rioul,O,and M Vetterli.Wavelet and signal processing[J].IEEE Signal Processing,1991,8(4):14~38.
  • 5[7]Avijit Chakraborty,David Okaya.Frequency-time decomposition of seismic data using wavelet-based methods[J].Geophysics,1995,60(6):1906~1916.
  • 6[10]Satish Sinha,Partha S Routh,etc.Spectral decomposition of seismic data with continuous-wavelet transform[J].Geophysics,2005,70(6):19~25.
  • 7[11]Hongbing Li,Wenzhi Zhao,etc.Measures of scale based on the wavelet scalogram with applications to seismic attenuation[J],Geophysics.2006,71(5):111~118.
  • 8[12]Jeffrey C,William J.On the existence of discrete Wigner distributions[J].IEEE Signal Processing Letters,1999,6(12):304~306.
  • 9[14]Cohen L.Generalized phase-space distribution functions[J].Jour.Math.Phys,1966,7:781~787.
  • 10[15]Jeffrey C,William J.Shift covariant time-frequency distributions of discrete signals[J].1999,47(1):133~146.

共引文献399

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部