期刊文献+

CAD模型引导的涡轮叶片密集测量数据分割 被引量:3

A CAD Model Directing Method for Turbine Blade Density Measurement Data Segmentation
下载PDF
导出
摘要 使用光学照相设备与锥束工业CT等数字化测量手段可以为涡轮叶片的几何形状检测提供密集的测量数据。为了有效进行涡轮叶片各结构特征的几何尺寸分析,需要对涡轮叶片的测量数据进行分割,把具有复杂拓扑结构的空心涡轮叶片的测量数据分割成简单拓扑结构对应的测量数据子集。针对已有测量数据分割方法的不足,提出一种CAD模型引导的涡轮叶片测量数据分割方法。该方法以叶片CAD模型的线框表示为先验知识,与基于边的测量数据分割方法相结合,实现涡轮叶片密集测量数据的可靠分割。使用仿真与实测的叶片数据对分割方法进行了验证。 Density measurement data of turbine blade could be obtained based on advanced digital measurement devices, such as ATOS(advanced topometric sensor) and cone beam industrial CT. In order to do the geometric shape analysis for each feature of the turbine blade effectively, the density measurement data of the turbine blade with complex topological structures should be segmented into relatively simple sub datasets according to blade structure. As the existing methods for data segmentation were still unable to get the required results reliably and automatically, a CAD model directing method for turbine blade density measurement data segmentation was presented. Combining the edge based data segmentation method, a line frame representation of the turbine blade CAD model was adopted as the preknowledge for directing the data segmentation process. The discussed method was verified by blade simulation data and real measurement data.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第18期2214-2218,共5页 China Mechanical Engineering
基金 国家863高技术研究发展计划资助项目(2006AA04Z144) 国家科技支撑计划资助项目(2006BAF04B02)
关键词 涡轮叶片 锥束CT 先验知识 数据分割 turbine blade cone beam CT pre--knowledge data segmentation
  • 相关文献

参考文献7

  • 1Varady T, Martin R R, Cox J. Reverse Engineering of Geometric Models--an Introduction[J]. Computer- aided Design, 1997,29 (4) : 255-268.
  • 2Woo H,Kang E, Semyung W. A New Segmentation Method for Point Cloud Data[J].International Jour nal of Machine Tools & Manufacturing, 2002,42: 167-178.
  • 3柯映林,单东日.基于区域分割与约束逼近的二次曲面重建[J].浙江大学学报(工学版),2004,38(10):1274-1279. 被引量:6
  • 4Yokoya N, Levine M D. Range Image Segmentation Based on Differential Geometry: a Hybrid Approach[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989,11 (6) : 644-649.
  • 5Akca D, Gruen A. Fast Correspondence Search for 3D Surface Matching[C]//Workshop Laser Scan- ning2005. Enschede, Netherlands, 2005 : 186-191.
  • 6刘元朋,刘晶,张力宁,张定华.复杂曲面测量数据最佳匹配问题研究[J].中国机械工程,2005,16(12):1080-1082. 被引量:23
  • 7Luken W L. Tessellation of Trimmed NURBS Surfaces[J]. Computer-aided Design, 1996, 13 (2): 163-177.

二级参考文献14

  • 1Besl P J, Mckay N D. A Method for Registration of 3D Shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence,1992,14(2) :239~256.
  • 2Byrd R H, Lu P,Nocedal J, et al. A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific Computing,1995,16(5):1190~1208.
  • 3VARADY T, MARTIN R R, COXT J. Reverse engineering of geometric models: an introduction [J]. Computer Aided Design, 1997, 29(4): 255 - 268.
  • 4HUANG J B, MENQ C H. Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points [J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 268 - 279.
  • 5TRUCCO E, FISHER R B. Experiments in curvaturebased segmentation of range data [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995, 17(2): 177 - 183.
  • 6WERGHI N, FISHER R, ROBERTSON C, et al. Object reconstruction by incorporating geometric constraints in reverse engineering [J]. Computer Aided Design, 1999, 31: 363- 399.
  • 7BENKO P, MARTIN R R, VARADY T, et al. Constrained fitting in reverse engineering [J]. Computer Aided Geometric Design, 2002, 19:173 -205.
  • 8LUKACS G, MARTIN R R, MARSHALL D. Faithful least-squares fitting of spheres, cylinders, cones, and tori for reliable segmentation [A]. Fifth European Conference on Computer Vision ( ECCV'98 ) [ C ]. Freiburg:[s,n. ],1998: 671-686.
  • 9沈兵,帅梅,高军,王小椿.大型复杂曲面类毛坯最佳适配算法的研究[J].西安交通大学学报,1999,33(11):90-94. 被引量:8
  • 10武殿梁,黄海量,丁玉成,赵万华.基于遗传算法和最小二乘法的曲面匹配[J].航空学报,2002,23(3):285-288. 被引量:28

共引文献27

同被引文献28

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部