摘要
针对电路板运行时从DCS上采集了大量特征数据,提出了基于数据挖掘的电路板故障诊断方法。即将运行的特征数据约简得出诊断的规则,再应用人工神经网络,优化该诊断的结果,并使其具有自学习能力,从而设计出具有故障诊断和智能预测的电路板故障诊断系统。
To makes the best of the large characteristic data from the DCS,a method of PCB fault diagnosis is provided which is based on Data Mining.It can derive the fault diagnosis knowledge from these data;next,applying the ANN,we get some optimal result and self-learning ability.So the PCB fault diagnosis system with intelligent fault prediction has been designed.
出处
《工业控制计算机》
2009年第9期42-43,共2页
Industrial Control Computer