期刊文献+

基于线性判别分析的特征选择 被引量:8

Feature selection based on linear discriminant analysis
下载PDF
导出
摘要 提出一种新颖的基于特征抽取的特征选择方法,将特征选择问题建模为在子空间中的搜索问题,采用线形判别分析(LDA)的投影思想,对LDA施加一定的限制将其转换为对子空间的搜索优化问题,从而通过解LDA的优化问题得到特征选择的解,进一步把特征选择问题推导简化为对特征的评分和排序过程。通过在UC I机器学习库和Reuters-21578文本数据集上的实验,验证了该方法以较少的特征获得了比全部特征更好的分类结果。 The paper proposed a new approach of feature selection based on Constrained Linear Discriminant Analysis (CLDA), which modeled feature selection as a search problem in subspace and made optimal solution subject to some restrictions. Furthermore, CLDA optimization problem was transformed into a process of scoring and sorting features. Experiments on UCI machine learning repository and Reuters-21578 dataset show that the proposed approach can consistently obtain better results with fewer features than that with all features.
出处 《计算机应用》 CSCD 北大核心 2009年第10期2781-2785,共5页 journal of Computer Applications
关键词 特征选择 线性判别分析 分类 feature selection Linear Discriminant Analysis (LDA) categorization
  • 相关文献

参考文献10

  • 1DUDA R O, HART P E, STORK D G. Pattern classification[ M] 2nd ed. San Francisco: WILEY, 2000.
  • 2KIRA K, RENDELL L A. The feature selection problem: Traditional methods and a new algorithm[ C]// Proceedings of Ninth National Conference on Artificial Intelligence. Cambridge: AAAI, 1992:129 - 134.
  • 3BURGES C J C. Geometric methods for feature extraction and dimensional reduction: A guided tour, MSR-TR-2004-55 [ R/OL]. [2009 -04 -01]. http://www. kernel-machines. org/publications/ Burges04.
  • 4LEWIS D D. Feature selection and feature extraction for text categorization[ C]// Proceedings of the Speech and Natural Language Workshop. Morristown: Association for Computational Linguistics, 1992:212-217.
  • 5YANG Y, PEDERSEN J O. A comparative study on feature selection in text categorization[C]//ICML-1997: 14th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 1997:412 -420.
  • 6HOWLAND P, PARK H. Generalizing discriminant analysis using the generalized singular value decomposition[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8) : 995 - 1006.
  • 7MARTINEZ A M, KAK A C. PCA versus LDA[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 23 (2) : 228 - 233.
  • 8YE J P, JANARDAN R, PARK C H, et al. A new optimization criterion for generalized discriminant analysis on undersampled problems[ C]// Proceedings of the Third IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2003: 419.
  • 9NEWMAN D J, HETTICH S, BLAKE C L, et al. UCI repository of machine learning databases[ EB/OL]. [ 2009 - 04 - 01 ]. http:// www. ics. uci. edu/- mlearn/MLRepository.html.
  • 10DASH M, LIU H. Feature selection for classification [ J]. International Journal of Intelligent data Analysis, 1997, 1(1) : 131 - 156.

同被引文献89

引证文献8

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部