期刊文献+

磷灰石包覆金红石型TiO2纳米粉体的制备及表征 被引量:1

Preparation and Characterization of Apatite Coated Rutile TiO_2 Composite Powders
下载PDF
导出
摘要 将金红石型TiO2纳米粉体浸泡在模拟体液中,于37℃经过不同时间,制备出磷灰石包覆金红石型TiO2纳米粉体.用XRD、SEM、TEM、EDX、FTIR、ICP-AES和BET方法对复合粉体进行了表征,XRD结果表明,磷灰石的含量可随着金红石型TiO2在模拟体液中浸泡时间的延长而增加.FTIR结果中显示了磷灰石的O-H和PO43-吸收峰,说明复合粉体中有磷灰石存在.ICP-AES结果表明溶液中Ca和P浓度随浸泡时间延长而下降,表明时间延长后更多的Ca和P被消耗.TEM和EDX结果证明了金红石型TiO2表面有磷灰石存在,HRTEM结果显示磷灰石(211)面的晶格间距为0.27nm,晶粒尺寸约为40nm. The composite of nanocrystalline apatite coated rutile TiO2 was prepared by soaking TiO2 nanosized powders into the simulated body fluid (SBF) at 37℃ for the different duration times. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), highresolution transmission electron microscope (HRTEM), energy dispersive X-ray (EDX), fourier transform infrared (FTIR) spectroscope, inductively coupled plasma atomic emission spectrometer (ICP-AES) and N2 adsorption measurements. XRD result shows that the content of the apatite coated on the rutile TiO2 increases with prolonging the soaking time in the SBF. It is demonstrated that composite powders have included some apatite through the absorption peaks of the O-H and PO43-of the apatite in the FTIR spectrum. ICP-AES result shows that Ca and P concentrations decrease with prolonging the soaking time in SBF. It is evident from the TEM and EDX that there is some apatite coated on the surfaces of the rutile TiO2. HRTEM result indicates that the interplanar spacing of (211) of the apatite is 0.27nm and the diameter of apatite nanoparticles is about 40nm.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2009年第5期893-896,共4页 Journal of Inorganic Materials
基金 国家科技支撑计划(2006BAA04B02-1) 国家自然科学基金(50772127) 上海市重点学科基金(B603)
关键词 金红石 磷灰石 模拟体液 TIO2 rutile apatite SBF titanium dioxide
  • 相关文献

参考文献19

  • 1Zhang Y,Santos J D.J.Eur.Ceram.Soc.,2001,21(2):169-175.
  • 2Nonami T,Hase H,Funakoshi K.Catal.Today,2004,96(3):113-118.
  • 3Nishikawa H,Omamiuda K.J.Mol.Catal.A:Chem.,2002,179(1/2):193-200.
  • 4Nishikawa H.J.Mol.Catal.A:Chem.,2004,207(2):149-153.
  • 5Anmin H,Tong L,Ming L,et al.Appl.Catal.B:Environ.,2006,63(1/2):41-44.
  • 6Reddy P M,Venugopal A,Subrahmanyam M.Appl.Catal.B:Envoron.,2006,69(3/4):164-170.
  • 7国伟林,杨中喜,王西奎,林志明,宋广智.纳米二氧化钛的超声化学法合成[J].硅酸盐学报,2004,32(8):1008-1011. 被引量:12
  • 8Ao C H,Lee S C,Yu Jimmy C.J.Photochem.Photobiol.A:Chem.,2003,156(1/2/3):171-177.
  • 9Sun J,Gao L,Zhang Q H.J.Am.Ceram.Soc.,2003,86(10):167-182.
  • 10Zhang Q H,Gao L,Guo J K.Appl.Catal.B:Environ.,2000,26(3):207-215.

二级参考文献19

  • 1SUSLICK K S, PRICE G J. Applications of ultrasound to materials chemistry [J]. Annu Rev Mater Sci, 1999, 29:295-326.
  • 2SUSLICK K S. The chemical effects of ultrasound [J]. Sci Am, 1989,2:80-86.
  • 3SUSLICK K S. Sonochemistry [J]. Science, 1990, 247:1 439-1 445.
  • 4SUSLICK K S, FANG M M, HYEON T, et al. Sonochemicai synthesis of iron colloids [J]. J Am Chem Soc, 1996,118(11):11 960-11 961.
  • 5SHAFI K V P M, GEDANKEN A, GOLDFARB B, et al.Sonochemical preparation nanosized amorphous Fe - Ni alloys[J]. J ApplPhys, 1997, 81(10):6 901-6 907.
  • 6HUANG W P, TANG X H, WANG Y Q, et al. Selective synthesis of anatase and rutile via ultrasound irradiation [J].Chem Commun, 2000, 15: 1 415-1 416.
  • 7HYEON T, FANG M M T, SUSLICK K S. Nanostructured molybdenum carbide: sonochemical synthesis and catalytic properties [J]. J Am Chem Soc, 1996,118:5 492-5 493.
  • 8WANG G Z, WANG Y W, CHEN W, et al. A facile synthesis route to CdS nanocrystals at room temperature [J]. Mater Lett, 2001,48(5) :269-272.
  • 9BREEN M L, DINSMORE A D, PINK R H, et al. Sonochemically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals[J]. Langmuir, 2001,17(3):903-907.
  • 10DANTSIN G, SUSLICK K S. Sonochemieal preparation of a nanostructured bifunctional catalyst [J]. J Am Chem Soc,2000,122:5 214-5 215.

共引文献11

同被引文献9

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部