期刊文献+

启动子和细胞全局转录机制的定向进化在微生物代谢工程中的应用 被引量:11

Directed evolution of promoter and cellular transcription machinery and its application in microbial metabolic engineering-a review
原文传递
导出
摘要 通过随机突变和定向选择而进行的定向进化(又称分子进化或人工进化)在改造酶的催化特性和稳定性、扩展酶的底物范围等方面具有广泛的应用。近年来,定向进化也开始应用在对结构基因的启动子区域和具有调节功能的蛋白如转录因子等进行代谢工程改造,并成功选育了对环境胁迫因素具有较强耐受性,以及发酵效率提高的微生物菌种。以下着重介绍近年来启动子的定向进化,包括启动子的强度和调节功能的分子进化,以及细胞全局转录工程等技术在微生物代谢工程中的应用,这些定向进化技术使人们可以更精细地调节基因表达水平,并可同时改变细胞内多个基因的转录水平,是代谢工程研究新的有力工具。 Directed evolution, which is also called molecular evolution, or artificial evolution, combines random mutagenesis and directed selection. In previous studies, it has been extensively applied for the improvement of enzyme catalytic properties and stability, as well as the expanding of substrate specificity. In recent years, directed evolution was also employed in metabolic engineering of promoters for improving their strength and function, and the engineering of global transcription machinery. These techniques contribute to breeding more tolerant strains against environmental stress, as well as strains with improved fermentation efficiency. In this article, we reviewed the applications of directed evolution in the metabolic engineering of promoters and global transcription machinery. These techniques enabled fine-tuning of gene expression and simultaneous alternation of multiple gene transcription inside the cells, and thus are powerful new tools for metabolic engineering.
出处 《生物工程学报》 CAS CSCD 北大核心 2009年第9期1312-1315,共4页 Chinese Journal of Biotechnology
基金 国家自然科学基金项目(No.30500011)资助~~
关键词 定向进化 启动子工程 全局转录机制 代谢工程 directed evolution, promoter engineering, global transcriptional machinery, metabolic engineering
  • 相关文献

参考文献23

  • 1Eijsink VG, Gaseidnes S, Borchert TV, et al. Directed evolution of enzyme stability. Biomol Eng, 2005, 22: 21-30.
  • 2Arnold FH, Wintrode PL, Miyazaki K, et al. How enzymes adapt: lessons from directed evolution. Trends Biochem Sci, 2001, 26(2): 100-106.
  • 3Turner NJ. Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol, 2003, 21(11): 474-478.
  • 4Jin YS, Ni H, Laplaza JM, et al. Optimal growth and ethanol production from xylose by recombinant Saccharornyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol, 2003, 69(1): 495-503.
  • 5Jensen PR, Hammer K. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol, 1998, 64(1): 82-87.
  • 6Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA, 2005, 102(36): 12678-12683.
  • 7Hartner FS, Ruth C, Langenegger D, et al. Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res, 2008, 36(12): e76.
  • 8Sumio M, Roustan JL, Remize F, et al. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast, 1997, 13(9): 783-793.
  • 9Nevoigt E, Kohnke J, Fischer CR, et al. Engineering of promoter replacement cassettes for fine-turning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol, 2006, 72(8): 5266-5273.
  • 10Lu C, Jeffries T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol, 2007, 73(19): 6072-6077.

同被引文献179

引证文献11

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部