期刊文献+

聚球藻7942光自养培养的碳代谢和能量代谢 被引量:2

Carbon and energetic metabolism of Synechococcus sp.PCC7942 under photoautotrophic conditions
原文传递
导出
摘要 代谢通量分析是研究微藻光自养培养过程中CO2和光能利用的一个非常有用的工具。本研究建立了聚球藻7942光自养培养代谢网络,并通过代谢通量方法分析了不同入射光强下的碳代谢流分布和能量代谢。研究结果表明,CO2固定是代谢能量和还原力消耗的主要途径,分别约占总消耗能量的85%和70%。研究还发现在一定光强范围,基于ATP生成的细胞得率和最大细胞得率基本维持不变,分别约为2.80g/molATP和2.95g/molATP,但基于总吸收光能的细胞得率和对应的光能转换效率则随着光强的增加而降低。 Metabolic flux analysis is a very powerful tool to understand CO2 fixation and light energy utilization of microalgae during photoautotrophic cultivation. A comprehensive network structure for the autotrophic growth of Synechococcus sp. PCC7942 was proposed, and the carbon and energetic metabolism under different incident light intensity was investigated based on metabolic flux analysis in this paper. These results showed that CO2 fixation was the main energy and reducing potential trap which accounted for 85% and 70% of the total energy and reducing potential consumption respectively. We also found that the cell yield and the maximum cell yield based on ATP synthesis were maintained 2.80 g/tool and 2.97 g/mol respectively under the appointed incident intensity. But the cell yield on absorbed light energy their corresponding energy conversion efficiency were descended with the increasing of incident intensity.
出处 《生物工程学报》 CAS CSCD 北大核心 2009年第9期1352-1359,共8页 Chinese Journal of Biotechnology
基金 国家自然基金项目(No.20506009) 江西省自然科学基金(No.0530095) 江西省教育厅(No.GJJ08147)资助~~
关键词 聚球藻7942 连续培养 代谢通量分析 能量代谢 光能转化 Synechococcus sp. PCC7942, continuous cultivation, metabolic flux analysis, energetic metabolism, light energy conversion
  • 相关文献

参考文献3

二级参考文献11

  • 1Liu F L,Sci China C,1999年,42卷,25~33页
  • 2Cheung W Y,Plant Physiol,1966年,41卷,731~737页
  • 3Félix L. Figueroa,Rafael Conde-álvarez,Iván Gómez.Relations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions[J].Photosynthesis Research.2003(3)
  • 4Yuji Nakajima,Ryohei Ueda.Improvement of microalgal photosynthetic productivity by reducing the content of light harvesting pigment[J].Journal of Applied Phycology.1999(2)
  • 5Anastasios Melis,John Neidhardt,John R. Benemann.Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells[J].Journal of Applied Phycology.1998(6)
  • 6Yuji Nakajima,Mikio Tsuzuki,Ryohei Ueda.Reduced photoinhibition of a phycocyanin-deficient mutant of Synechocystis PCC 6714[J].Journal of Applied Phycology.1998(5)
  • 7John Neidhardt,John R. Benemann,Liping Zhang,Anastasios Melis.Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae)[J].Photosynthesis Research.1998(2)
  • 8Yuji Nakajima,Ryohei Ueda.Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments[J].Journal of Applied Phycology.1997(6)
  • 9Madhulika Srivastava,Devaki Bhaya,Salil Bose.Changes in the antenna size of Photosystem I and Photosystem II in Synechococcus sp. strain PCC 7942 grown in the presence of SANDOZ 9785 — a Photosystem II inhibitor[J].Photosynthesis Research.1994(2)
  • 10Jiang, LJ,Zhao, JQ.Progress in the study on structure and function of the antenna of algae[J].Chinese Science Bulletin,1997,42(1):1-7. 被引量:2

共引文献5

同被引文献41

  • 1汪晶,康瑞娟,施定基,丛威,蔡昭铃.有机碳源对转hTNF-α基因聚球藻生长和光合作用的影响[J].植物生理与分子生物学学报,2003,29(5):405-408. 被引量:10
  • 2马英,焦念志.聚球藻(Synechococcus)分子生态学研究进展[J].自然科学进展,2004,14(9):967-972. 被引量:16
  • 3Tchernov D, Helman Y, Keren N, et al. Passive entry of CO2 and its energy-dependent intracellular conversion to HCO3- in cyanobacteria are driven by a photosystem I-generated deltamuH+. J Biol Chem, 2001, 276(26): 23450 23455.
  • 4Vazquez-Bermudez MF, Paz-Yepes J, Herrero A, et al. The NtcA-activated amtl gene encodes a permease required for uptake of low concentrations of ammonium in the cyanobacterium Synechococcus sp. PCC 7942. Microbiology, 2002, 148(3): 861-869.
  • 5Sandstrom S, Ivanov AG, Park YI, et al. Iron stress responses in the cyanobacterium Synechococcus sp. PCC7942. Physiol Plant, 2002, 116(2): 255-263.
  • 6Sarcina M, Tobin MJ, Mullineaux CW. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942. Effects of phycobilisome size, temperature, and membrane lipid composition. JBiol Chem, 2001, 276(50): 46830-46834.
  • 7Schmitz O, Boison G, Bothe H. Quantitative analysis of expression of two circadian clock-controlled gene clusters coding for the bidirectional hydrogenase in the cyanobacterium Synechococcus sp. PCC7942. Mol Microbiol, 2008, 41(6): 1409-1417.
  • 8Kratz W, Myers J. Photosynthesis and Respiration of Three Blue-Green Algae. Plant Physiol, 1955, 30(3): 275-280.
  • 9Hoare DS, Hoare SL, Moore RB. The photoassimilation of organic compounds by autotrophic blue-green algae. Microbiology, 1967, 49(3): 351-370.
  • 10Pelroy R, Rippka R, Stanier R. Metabolism of glucose by unicellular blue-green algae. Arch Microbiol, 1972, 87(4): 303-322.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部