期刊文献+

修正的Bernstein算子的点态逼近性质 被引量:2

The pointwise approximation properties for the modified Bernstein operators
下载PDF
导出
摘要 为改善算子的逼近速度,许多学者对一些著名的线性算子进行修正。King J P把Bernstein算子修正为算子Ln(f,x),并利用古典光滑模ω(f,t)研究了算子Ln(f,x)的收敛速度。利用统一光滑模ωφλ(f,t)来刻划Ln(f,x)的逼近性质,首先利用光滑K-泛函的等价性得到点态逼近正定理,其次对算子导数进行了估计,进而证明了等价定理.所得结果扩展了以前的一些结果。 In order to improve the approximation rate of the operators, many scholars have modified some famous linear operators. King J P has modified Bernstein operators into the operators Ln (f,x) and researched the convergent rate of L,(f,x) by the classic module ω(f,t). By mean of the unified module of smoothness ωφλ (f,t), the approximation properties of Ln(f,x) are shown. Firstly, using the equivalent relations between module of smoothess and K -functional, the poinwise direce theorem is obtained. Secondly, the estimate of derivatives of operators is obtained and the equivalent theorem is proved. The results expand the previous ones.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2009年第4期469-473,共5页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10771049) 河北师范大学基金资助项目(120137)
关键词 BERNSTEIN算子 光滑模 K-泛函 正定理 等价定理 Bernstein operators module of smoothness K-functional direct theorem equivalent theorem
  • 相关文献

参考文献8

  • 1DEVORE R A. The approximation of continuous functions by positive linear operators[ J]. Lecture Notes in Mathematics 293, New York : Springer - Verlag, 1972.
  • 2KING J P. Positive linear operators which preserve x^2 [J]. Aeta Math, 2003,99(3) :203 -208.
  • 3DITZIAN Z, TOTIK V. Moduli of smoothness[ M]. New York: Springer-Verlag, 1987.
  • 4郭顺生,李翠香,齐秋兰.Bernstein算子的逼近[J].Journal of Mathematical Research and Exposition,2005,25(4):749-756. 被引量:3
  • 5叶继昌.关于扩展的Bernstain插值多项式[J].黑龙江大学自然科学学报,1993,10(3):19-21. 被引量:1
  • 6姜功建.一类新的Meyer-Knig and Zeller型算子对有界变差函数的逼近[J].黑龙江大学自然科学学报,1991,8(4):41-47. 被引量:1
  • 7OZARSLAN M A, DUMAN O. MKZ type operatorsproviding a better estimation on [1/2, 1 ) [ J ]. Canadian Math Bull, 2007, 50 ( 3 ) : 434 - 439.
  • 8DUMAN O, OZARSLAN M A. Sasz -Mirakjan type operators providing a better error estimation[ J ]. Applied Math, 2007, 20:1184 -1188.

二级参考文献5

  • 1DITZIAN Z. Interpolation Theorems and the Rate of Convergence of Bernstein Polynomials [M]. Approximation Theory III, 341-347, Academic Press, New York-London, 1980.
  • 2DITZIAN Z. Direct estimate for Bernstein polynomials [J]. J. Approx. Theory, 1994, 79: 165-166.
  • 3DITZIAN Z, TOTIK V. Moduli of Smoothness [M]. Springer-Verlag, New York, 1987.
  • 4GUO Shun-sheng, YUE Shu-jie, LI Cui-xiang, et al. A pointwise approximation theorem for linear combinations of Bernstein polynomials [J]. Abstr. Appl. Anal., 1996, 1(4): 397-406.
  • 5DITZIAN Z. A globle inverse theorem for combinations of Bernstein polynomials [J]. J. Approx. Theory, 1979,26: 277-292.

共引文献2

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部