期刊文献+

一种结合形状序列和DTW的动作识别方法 被引量:3

Activity Recognition Method for Combining Shape Sequence and DTW
下载PDF
导出
摘要 提出了一种单幅图像上轮廓信息的获取方法,在一段时间内发生的动作可以通过采样获得多幅图像来表示该动作特征。这些图像可以看成是轮廓形状变化序列,通过比较不同动作的轮廓形状序列,使得动作能够较容易地识别出来。实验证明,轮廓信息能够较好地反映对象的形状,采用形状序列和DTW相结合的方法能够提高动作识别的准确性。 The object shape from a single image is represented by using silhouette information. Several images compose a sequence of the shape to represent an activity for a limited time. An activity can be recognized compared with different shape sequences. Experimental results show that the silhouette information can characterize the object shape. Thus the recognition accuracy can be improved by combining the shape sequence with dynamic time warping(DTW).
出处 《数据采集与处理》 CSCD 北大核心 2009年第5期615-620,共6页 Journal of Data Acquisition and Processing
关键词 动作识别 动态时间规整 形状序列 activity recognition dynamic time warping(DTW) shape sequence
  • 相关文献

参考文献16

  • 1Robledo I, Grother P, Phillips J, et al. The gait identification challenge problem: data sets and baseline algorithm[C]//Proc Int' l Conf Pattern Recognition. Washington DC : IEEE, 2002 : 10385.
  • 2ChowdhuryA R, Veeraraghavan A, Chellappa R. Role of shape and kinematics in human movement anal-ysis [C]//Proc IEEE Conf Computer Vision Pattern Recognition. Washington DC: IEEE, 2004: 730-737.
  • 3Carter J N, Nixon M S, Veres G V, et al. What image information is important in silhouette-based gait recognition? [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR' 04). Washington DC: IEEE, 2004:776- 782.
  • 4Liu Zongyi, Sarkar S. Improved gait recognition by gait dynamics normalization[J]. IEEE Trans Pattern Analysis and Machine Intell, 2006,28 (6) : 863-876.
  • 5Gorelick L, Blank M, Shechtman E, et al. Actions as space-time shapes[J]. IEEE Trans Pattern Analysis and Machine Intell, 2006,28(6) : 863-876.
  • 6Wolf L, Poggio T, Jhuang H, et al. A biologically inspired system for action recognition[C]//ICCV. Washington DC.. IEEE, 2007 : 1-8.
  • 7Shechtman E, Irani M, Blank M, et al. Actions as space-time shapes [C]//ICCV. Washington DC: IEEE, 2005 : 1395-1402.
  • 8Rabiner L, Juang B. Fundamentals of Speech Recognition[M]. Boston: Prentice Hall, 1993.
  • 9Aaeh J, Church G M. Aligning gene expression time series with time warping algorithms [J]. Bioinformaties, 2001,17 (6) : 495-508.
  • 10Rath T, Manmatha R. Word image matching using dynamic time warping[C]//Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE, 2003 : 521-527.

同被引文献42

  • 1李亚安,王军,雷粉霞.自适应核时频分布在抑制交叉项中的应用[J].系统工程与电子技术,2004,26(11):1567-1569. 被引量:13
  • 2张万里,刘桥.Mel频率倒谱系数提取及其在声纹识别中的作用[J].贵州大学学报(自然科学版),2005,22(2):207-210. 被引量:20
  • 3庄军,李弼程.一种基于灰度共生矩阵的文本图像识别方法[J].计算机工程,2006,32(3):214-216. 被引量:11
  • 4陈雨红,杨长春,曹齐放,李波涛,尚永生.几种时频分析方法比较[J].地球物理学进展,2006,21(4):1180-1185. 被引量:116
  • 5余涛.Kinect应用开发实战[M].北京:机械工业出版社,2013:32-36.
  • 6薛宇志.依照鸟类呜叫与鸣唱声识别其种类[D].中国台北:国立台北科技大学,1998.
  • 7Care M. Time-frequency analysis[J]. Eos,Transactions American Geophysica Union,1982,63(51):13-20.
  • 8Haraliek R M. Statistical and structural approaches to texture[J]. Proceeding of IEEE, 1975, 67(5) :786-504.
  • 9Baraedi A, Parmiggian F. An investigation of texture characteristics associated with gray level co-occurrence matrix statisti- cal parameters [J]. IEEE Trans On Geo-Science and Remote Sensing, 1995, 33(2):293-303.
  • 10Michael K. Lawrence B, Rabiner R. An adaptive, ordered, graph search technique for dynamic time warping for isolated word recognition[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1982,1(4):535-544.

引证文献3

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部