期刊文献+

欧氏完备的α相对极值超曲面(英文) 被引量:1

Euclidean complete a relative extremal hypersurfaces
原文传递
导出
摘要 设 x:M→R^(n+1)是凸域ΩR^n 上的严格凸函数 x_(n+1)=f(x_1,…,x_n)定义的一个局部强凸超曲面.如果 f 是下面方程的解,则称 M 为α相对极值超曲面:△ρ=(2-nα)/2(‖▽ρ‖~2)/ρ,ρ:=(det((a^2f)/(ax_iax_j)))^(1/(n+2)).2007年,贾和李证明了存在一个仅依赖于维数 n 的正常数 K(n),如果|α|≥K(n),那么欧氏完备的α相对极值超曲面是椭圆抛物面.本文中我们利用 Calabi 度量给出了这个定理的一个简单证明. Let X:M→R^n+1 be a locally strongly convex hypersurface, given by the graph of a strictly convex function Xn+1=f(x1,…,xn) defined on a convex domain Ω R^N. M is called an a relative extremal hypersurface, if f is a solution of △ρ=2-nα/2||ρ||^2/ρ,ρ:=(det( ))^-1/n+2 ,where △ and ||·|| denote the Laplacian and tensor norm with respect to the Calabi metric, respectively. In 2007, Jia and Li proved that Euclidean complete a relative extremal hypersurface must be an elliptic paraboloid for |α|≥K(n), where K(n) is a positive constant depending only on the dimension n. Here we will use the Calabi metric to give a relatively simple proof.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期1217-1223,共7页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10631050,10671181)
关键词 Bernstein性质 欧氏完备 Monge—Ampere方程 Bernstein property, Euclidean complete, Monge-Ampere equation
  • 相关文献

参考文献16

  • 1Donaldson S K. Interior estimates for solutions of Abreuts equation, airXiv: math. DG/0407486.
  • 2Jia F, Li A M. Interior estimates for solutions of a fourth order nonlinear partial differential equation [J]. Diff Geom Appl, 2007, 25. 433.
  • 3Li A M, Jia F. Euclidean complete affine surfaces with constant affine mean curvature[J]. Ann Global Anal Geom, 2003, 23: 283.
  • 4Li A M, Jia F. The Bernstein property of some fourth order partial differential equations[J]. Result Math, in press.
  • 5Li A M, Jia F. A Bernstein property of affine maximal hypersurfaces [J]. Ann Global Anal Geom, 2003, 23: 359.
  • 6Li A M, Simon U, Chen B. A two-step Monge- Ampere procedure for solving a fourth order PDE for affine hypersurfaces with constant eurvature[J]. J Reine Angew Math, 1997, 487: 179.
  • 7Li A M, Simon U, Zhao G. Global affine differential geometry of hypersurfaces[M]. Berlin/New York: Walter de Gruyter, 1993.
  • 8Abreu M. K/ihler geometry of toric varieties and extremal metrics[J]. IntJ Math, 1998, 9: 641.
  • 9Xu R W. Bernstein properties for some relative parabolic affine hyperspheres[J]. Result Math, 2008, 52 : 409.
  • 10Trudinger N, Wang X. The Bernstein problem for affine maximal hypersurfaces [J]. Invent Math, 2000, 140: 399.

二级参考文献10

  • 1王宝富.具给定仿射曲率的仿射完备的超曲面(英文)[J].四川大学学报(自然科学版),2007,44(4):729-732. 被引量:1
  • 2Li A M, Simon U, Zhao G S. Global affine differential geometry of hypersurfaces [ M ]. Berlin/New York: Wde Gruyter, 1993.
  • 3Li A M, Simon U, Zhao G S. Hypersurfaces with prescribed affine Gauss-Kronecker curvature[J]. Geometriae Dedicata, 2000, 81: 141.
  • 4Li A M, Jia F. Euclidean complete affine surfaces with constant affine mean curvature [ J ]. Annals of global analysis and geometry, 2003, 23: 283.
  • 5Li A M, Jia F. A Bernstein property of affine maximal hypersurfaces[J]. Annals of Global Analysis and Geomety, 2003, 23: 359.
  • 6Li A M, Simon U, Chen B H. A two-step MongeAmpere procedure for solving a fourth order PDE for affine hypersurfaces with constant constant curvature [J]. Jrein Angew Math, 1997, 487: 179.
  • 7Xu R W. Bernstein properties for some relative parabolic affine hyperspheres[J]. Results in Math, 2008, 52: 409.
  • 8Wang B F, Li A M. The Euclidean complete affine hypersurfaces with negative constant affine mean curvature [J]. Results in Math, 2008, 52: 383.
  • 9Wang B F. The affine complete hypersurfaces of con- stant Gauss-Kronecker curvature [ J ]. Acta Math Sin Eng Sci, Preprint.
  • 10杨宝莹,王宝富.仿射Khler流形的一类变分问题(英文)[J].四川大学学报(自然科学版),2008,45(1):1-9. 被引量:3

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部