摘要
作者讨论了具有线性尖点的1:2共振平面向量场=y,=x(1-x^2)(3-x^2)+μ(ξ_0+ξ_1x^2-x^4)y 的非局部分岔,其中 x,y∈R,参数ξ_0,ξ_1∈R且|μ|《1.通过讨论其相应的 Picard-Fuchs 方程,作者给出了由 Poincar分岔和异宿轨分岔出极限环的条件.
The authors discuss the nonlocal bifurcation of a class of planar system with 1:2 resonance for linear cuspx = y ,y = x(1 -x^2)(3-x^2)+μ(ε0+ε1x^2-x^4)y , where x,y∈R,parameters ε0,ε1∈R and |μ|〈〈1 . By studying Picard-Fuchs equation,the authors give conditions for limit cycles arising from Poincaré bifurcation and heteroclinic bifurcation.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第5期1224-1228,共5页
Journal of Sichuan University(Natural Science Edition)