期刊文献+

一类含有同宿轨的系统的Melnikov函数的零点(英文) 被引量:1

Zeros of the Melnikov function of a system with homoclinic orbits
原文传递
导出
摘要 作者考虑了一类具有同宿轨的三次多项式系统对应的Melnikov函数的零点问题,该Melnikov函数可写为Abel积分线性组合的形式.在推导出的Abel积分的Picard-Fuch方程与相关性质的基础上,作者得到了Melnikov函数至多只有一个零点.这表明围绕一个平衡点至多有一个限环分岔出.进一步,作者还给出了分岔图,即给出了围绕一个平衡点的Melnikov函数有一个零点的充分必要条件. The paper deals with zeros of the Melnikov function about a cubic system with homoclinic orbits. This Melnikov function can be rewritten as a linear combination of Abelian integrals. A Picard- Fuchs equation of Abelian integrals is derived and an induced equation is obtained to determine the properties of Abelian integrals. According to these properties, the Melnikov function has at most one zero point which means there is at most one limit cycle surrounding one singularity. Furthermore the sufficient and necessary condition for that the Melnikov function has exact one zero point is given.
作者 何志蓉
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期1229-1232,共4页 Journal of Sichuan University(Natural Science Edition)
关键词 三次系统 MELNIKOV函数 ABEL积分 Picard—Fuch方程 cubic system, Melnikov function,Abelian integral,Picard-Fuchs equation
  • 相关文献

参考文献12

  • 1Dulac H. Sur les cycles limites[J]. Bull Soc Math Fr,1923, 51: 45.
  • 2Il'yashenko Yu S. Finiteness theorems for limit cycles[J]. Russian Math Surveys, 1990, 40: 143.
  • 3Ecalle J E. Finititude des cycles limites et accelerosommation de l' application de retour [J]. Lecture Notes in Math, 1990,1455: 74.
  • 4Lins A, Melo de W, Pugh C C. On Lienard's equation[J]. Lecture Notes in Math, 1977, 597:335.
  • 5Lioyd N G, Lynch S. Small-amplitude limit cycles of certain Lienard systems[J]. Proc Roy Soc London: Ser A, 1988, 418: 199.
  • 6Dumoratier F, Li C. On the uniqueness of limit cycles surrounding one or more singularities in Lienard equations[J]. Nonlinearity, 1996, 9:1489.
  • 7Dumortier F, Li C. Quadratic Lienard equations with quadratic damping[J]. J Diff Eq, 1997,139:41.
  • 8Dumortier F, Rousseau C. Cubic Lienard equations with linear damping[J]. Nonlinearity, 1990, 3 : 1015.
  • 9Dumortier F, Li C. Perturbations from an elliptic hamiltonian of degree four: (Ⅰ) saddle loop and two saddle cycle[J]. J Diff Eq, 2001,176 : 114.
  • 10Dumortier F, Li C. Perturbations from an elliptic hamiltonian of degree four: (Ⅱ) cuspidal loop[J]. J Diff Eq,2001,175 : 209.

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部