期刊文献+

过程噪声和量测噪声多步相关的卡尔曼型滤波 被引量:3

The Kalman type filter of multi-step correlated process and measurement noises
原文传递
导出
摘要 作者详细讨论了随机离散时间动态系统中过程噪声w_k和量测噪声v_k两步相关情况下的最优状态估计,给出了两步相关情况下的卡尔曼型滤波,然后把它推广到过程噪声w_k和量测噪声v_k多步相关的情况,给出了n步相关情况下卡尔曼型滤波的一般表达式. This paper discusses first that in the discrete time random dynamic system, what is the optimal recursive solution of the state estimation when the process noise and measurement noise are two-step correlated. A Kalman type filter for this system is present. Then,the authors extend it to the more general case of the process noise and measurement noise being n-step correlated and present a Kalman type filter in this case.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期1237-1240,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(60874107 10826101) 863基金(2006AA12A104) 国家信息控制实验室基金
关键词 卡尔曼滤波 过程噪声 量测噪声 两步相关 多步相关 Kalman filter, process noise measurement noise multi-step correlated
  • 相关文献

参考文献8

  • 1Kalman R E. A new approach to linear filtering and prediction problem[J]. Journal of Basic Engineering: Ser D, 1960, 82: 35.
  • 2Brown R G. Introduction to random signal analysis and Kalman filtering[M]. New York: John Wiley and Sons, 1983.
  • 3Sorenson H W. Kalman filtering techniques[M]. New York: Academic Press, 1966.
  • 4Labeau F. A correlated Kalman filtering model for subband coding over noisy channels[C]//Second International Conference on Digital Telecommunication, Silicon Valley, American, July 1-6,2007. IEEE CNF, 2007 : 17.
  • 5Li X R. Discrete-time linear filtering in arbitrary noise[C]//39^th IEEE Conference on Decision and Contro, Sydney, Australia, December, 2000. IEEE CNF,2000,2 : 1212.
  • 6Rogers S R. Steady-state kalman filter with corrlated measurement noise: an analytical solution[J]. IEEE, 1989,1: 218: 221.
  • 7Dan-Simon. Optimal state estimation[M]. New York: John wiley & Sons, 2006.
  • 8Stewart G W. Introduction to matrix computions[M]. New York: Academic Press, 1973.

同被引文献38

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部