期刊文献+

平面圆周限制性五体问题的变分最小解

Variational minimizing solutions for planar circular restricted 5-body problems
原文传递
导出
摘要 作者对四个等质量和一个零质量的平面牛顿圆周限制性五体问题,利用变分的方法,并通过比较拉格朗日作用函数在测试轨道和碰撞轨道上的上、下界,证明了一种新的非碰撞周期解的存在性. For planar Newtonian circular restricted 5-body problems with 4-equal and one zero primaries, through variational methods,the authors prove the existence of new noncollision periodic solutions. To avoid collisions,they compare the lower bound for the Lagrangian action on the symmetry collision orbits and the upper bound for the Lagrangian action on the test orbits.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期1282-1284,共3页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(10671132)
关键词 周期解 限制性五体问题 变分方法 periodic solutions, restricted 5-body problems, variational methods
  • 相关文献

参考文献9

  • 1Coti Zelati V. The periodic solutions of N-body type problems[J]. Ann IHP Ann nonlineaire, 1990, 7: 477.
  • 2Chern S S. Global differential geometry[M]. Washington: MAA, 1989.
  • 3Bessi U, Coti Zelati V. Symmetries and noncollision closed orbits for planar N-body-type problems[J]. Nonlinear Anal, 1991, 16: 587.
  • 4Zhang S Q. Periodic solution for N-body problems [C]//Chang K C, Long Y L. Progress in Nonlinear Analysis. Beijing: World Scientific,2000.
  • 5Zhang S Q, Zhou Q. A minimizing property of Lagrangian solution [J]. Acta Math Siniea, 2001, 7: 495.
  • 6张世清,周青.Variational methods for the choreography solution to the three-body problem[J].Science China Mathematics,2002,45(5):594-597. 被引量:7
  • 7Struwe M. Variational methods [M]. New York: Springer-Verlag, 1990.
  • 8Palais R. The principle of symmetric criticality [J]. Comm Math Phys, 1997, 69: 19.
  • 9Gordon W. A minimizing propety of Keplerian orbits [J]. AmerJ Math, 1977, 5: 961.

二级参考文献2

  • 1Richard S. Palais.The principle of symmetric criticality[J].Communications in Mathematical Physics.1979(1)
  • 2Gordon,W.A minimizing property of Keplerian orbits, Amer[].Journal of Mathematics.1977

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部