期刊文献+

极小极大加系统(F,G,H)的输出反馈镇定

Output-feedback stabilization for min-max-plus systems (F,G, H)
下载PDF
导出
摘要 研究了一般化非自治非线性极小极大加系统的输出反馈镇定问题.首先,提出了闭环系统单极大射影系统表达式.其次,研究指出闭环单极大射影子系统存在严格的颜色匹配关系.接着,针对颜色匹配的复杂情况,提出新的着色图构造.以往对闭环单极大射影子系统中出现的新增圈研究,仅涉及含有一条反馈弧的圈,本文指出新增圈中可能包含由多条反馈弧构成的圈.最后,根据新着色图和新增圈特点得到了系统输出反馈镇定的一个充分条件. The problem of output-feedback stabilization for a general nonlinear, non-autonomous min-max-plus system is studied; new results of nonlinear discrete event dynamic systems are described. First, the max-plus projection system representation for a closed-loop system with min-max-plus output feedback is proposed. Second, strict color-match requirements for the closed-loop max-plus projection system are pointed out. Then, based on the complexity of the color-match requirements, a new coloring graph structure is presented. Previous researches only considered new circuits relating to one feedback edge in the closed-loop max-plus projection system; whereas in this paper, it is pointed out that more feedback edges can be included in the new circuits. Finally, a sufficient condition for output feedback stabilization of min-max-plus system is derived according to the new coloring graph and new circuits characteristics.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第9期937-941,共5页 Control Theory & Applications
关键词 极小极大加函数 能达性 能观性 着色图 输出反馈镇定 min-max-plus function reachability observability coloring graph output-feedback stabilization
  • 相关文献

参考文献13

  • 1CHEN Wende (Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science, Academia Sinica, Beijing 100080, China).CYCLE TIMES ASSIGNMENT OF NONLINEAR DISCRETE EVENT DYNAMIC SYSTEMS[J].Systems Science and Mathematical Sciences,2000,13(2):213-218. 被引量:9
  • 2DE SCHUTrER B, VAN DEN BOOM T. Model predictive control for max-rain-plus systems, discrete event systems: analysis and control[C]//The Kluwer lnt Series in Engineering and Computer Science. Boston: Kluwer Academic Publishers, 2000, 569:201 - 208.
  • 3TAO Y, CHEN W. Cycle time assignment of min-max systems[J]. International Journal of Control, 2003, 76(18): 1790 - 1799.
  • 4ZHAO Q, ZHENG D. On stabilization of min-max systems[J]. Automatica, 2003, 39(4): 751 - 756.
  • 5COHEN G, DUBIOS D, QUARDRAT J P, et al. A linear-system- theoretic view of discrete-event processes and its use for performance evaluation in manufacturing[J]. IEEE Transactions on Automatic Control, 1985, 30(3): 210 - 220.
  • 6陶跃钢,陈文德.非线性DEDS的周期时间部分合并配置与能稳性[J].系统科学与数学,2003,23(4):536-541. 被引量:2
  • 7陶跃钢,陈文德,刘国平.非线性极大极小系统的镇定[C]//第二十三届中国控制会议论文集.上海:华东理工大学出版社,2004:655-658.
  • 8TAO Y, LIU G. State feedback stabilization and majorizing achievement of min-max-plus systems[J]. IEEE Transactions on Automatic Control, 2005, 50(12): 2027 - 2033.
  • 9ZHU Y, TAO Y, LIU G. Output class of nonlinear time-evolution feedback stabilization for a systems[EB/OL]. Nonlinear Analysis: Theory, Methods and Applications, 2008[2008.4] http://www.sciencedirect.com/science/article/B6VOY--4S62RJ3- 6/2/67d634ead429fc57a3c6f4bbc2fbd081.
  • 10GUNAWARDENA J. Min-max functions[J]. Discrete Event Dynamic Systems, 1994, 4:377 - 406.

二级参考文献3

  • 1Jeremy Gunawardena. Min-max functions[J] 1994,Discrete Event Dynamic Systems: Theory and Applications(4):377~407
  • 2Geert Jan Olsder. Eigenvalues of dynamic max-min systems[J] 1991,Discrete Event Dynamic Systems(2):177~207
  • 3CHEN Wende (Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science, Academia Sinica, Beijing 100080, China).CYCLE TIMES ASSIGNMENT OF NONLINEAR DISCRETE EVENT DYNAMIC SYSTEMS[J].Systems Science and Mathematical Sciences,2000,13(2):213-218. 被引量:9

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部