期刊文献+

非恒同混沌系统的全状态广义同步 被引量:3

Full state generalized synchronization of nonidentical chaotic systems
下载PDF
导出
摘要 在已有的广义同步定义基础上,提出了一种新的概念—-非恒同混沌系统的全状态广义同步(FSGS),给出了实现全状态广义同步的统一的控制器形式,该控制器适用范围大,结构相对简单,并且是自适应的.以Chua电路、Lorenz系统、Rssler系统和Liu系统为例,数值实验验证了该方法的有效性,该控制方法可以很快的实现两个混沌系统的全状态广义同步. Based on the existing generalized synchronization, a new synchronization the full-state generalized synchronization (FSGS) is proposed for nonidentical chaotic systems. The controller with a unified structure is designed for this new synchronization. This simple and adaptive controller can be applied to a wide range of generalized synchronizations. Computer simulations are performed to illustrate the effectiveness of the proposed method for Chua circuit, Lorenz system, Rossler system and Liu system. This approach can realize a fast full-state generalized synchronization of two chaotic systems.
作者 陈娟 陆君安
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第9期949-952,共4页 Control Theory & Applications
基金 国家自然科学基金资助项目(60574045 70771084) 国家重点基础研究发展计划资助项目(2007CB310805)
关键词 混沌系统 自适应控制 广义同步 全状态 chaotic system adaptive control generalized synchronization full-state
  • 相关文献

参考文献22

  • 1LU J A, WU X Q, LU J H. Synchronization of a unified system and the application in secure communication[J]. Physics Letters A, 2002, 305(6): 365 - 370.
  • 2ARGYRIS A, SYVRIDIS D, LARGER L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature(London), 2005, 438(7006): 343 - 346.
  • 3吴晓群,陆君安,谢进,余明辉.用采样数据反馈控制统一混沌系统到平衡点[J].控制理论与应用,2003,20(6):889-893. 被引量:6
  • 4MOHANTY E Nano-oscillators get it together[J]. Nature(London), 2005, 437(7057): 325-326.
  • 5HOPPENSTEADT F C, IZHIKEVICH E. Oscillatary neurocomputers with dynamic connectivity: US, 6957204[P]. October,2005.
  • 6UHLHAAS P J, SINGER W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology[J]. Neuron, 2006, 52(1): 155 - 168.
  • 7PECORA L M, CARROLL T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821 - 824.
  • 8PIKOVSKY A, ROSEBLUM M, KURTHS J. Synchronization: A Universal Concept in Nonlinear Sciences[M]. Cambridge, England: Cambridge University Press, 2001.
  • 9VENKATARAMANI S C, HUNT B R, OTT E, et al. Transitions to Bubbing of chaotic systems[J]. Physical Review Letters, 1996, 77(27): 5361 - 5364.
  • 10ASTAKHOV V, HASLER M, KAPITANIAK T, et al. Effect of parameter mismatch on the mechanism of chaos synchronization loss in coupled systems[J]. Physical Review E, 1998, 58(5): 5620 - 5628.

二级参考文献31

共引文献52

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部