期刊文献+

具有转换函数的均匀差分进化算法及性能分析 被引量:2

Uniform differential evolution algorithm with transform function and performance analysis
下载PDF
导出
摘要 对于求解复杂优化问题,差分进化算法存在后期收敛缓慢、易于陷入局部最优等缺点.为此,从充分利用求解信息和目标信息角度提出了具有转换函数的均匀差分进化算法.首先对3个算子进行分布均匀性分析及设计,使其生成的个体能完全表征解空间特征,并增强种群多样性.其次,为简化优化环境,利用一种适应度转换函数使得当前局部极小点及相关区域拉伸一定高度而优于当前极小点的函数部分保持数值不变.最后通过性能指标的定量评价,结果验证了改进算法在有效性、鲁棒性和效率上的优异性能. When differential evolution algorithm is applied in complicated optimization problems, it has the shortages of prematurity and stagnation. By efficiently utilizing the information of objective function and solving problems, a uniform differential evolution algorithm with transform function is proposed in this paper. Firstly, three operators are designed to generate individuals which obey uniform distribution. Individuals can fully represent the solution space. So the diversity of populations and capability of global search will be enhanced. Secondly, a transform function used to simplify the objective function is constructed. It stretches the current local minimum and related regions up to a certain height, while keeps the optimized function unchanged under the local minimum. Thus, the number of local minima will be largely decreased with the progress of iterations. Finally, the improved algorithm is quantitatively evaluated by performance indices. The simulation results show that it has perfect property in efficacy and converges faster, and is more stable.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第9期1014-1018,共5页 Control Theory & Applications
关键词 差分进化算法 均匀设计 适应度转换函数 函数优化 differential evolution algorithm uniform design transform function function optimization
  • 相关文献

参考文献12

  • 1STORN R, PRICE K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[R]. America : International Computer Science Institute, 1995.
  • 2颜学峰,余娟,钱锋.自适应变异差分进化算法估计软测量参数[J].控制理论与应用,2006,23(5):744-748. 被引量:24
  • 3URSEM R K, VADSTRUP E Parameter identification of induction motors using differential evolution[C]//Proceeding of the Fifth Congress on Evolutionary Computation Conference. Canberra: [s.n.], 2003:790 - 796.
  • 4CHIOU J P, WANG F S. A hybrid method of differential evolution with application to optimal control problems of a bioprocess system[C]//Proceeding of lEEE International Conference on Evolutionary Computation. New York: IEEE, 1998:627 - 632.
  • 5吴燕玲,卢建刚,孙优贤.基于免疫原理的差分进化[J].控制与决策,2007,22(11):1309-1312. 被引量:11
  • 6蔡晓芬,钟守楠.演化均匀优化算法[J].数学杂志,2005,25(3):349-354. 被引量:2
  • 7DENG L Y, GEORGE E O. Generation of uniform variate from several nearly uniformly distributed variables[J]. Communications in Statistics: Simulation and Computation, 1990, 19(1): 145 - 154.
  • 8王元 方开泰.数论方法在统计中的应用[M].北京:科学出版社,1996..
  • 9汪琍,张铃.用网格实现交叉操作的遗传算法[J].计算机工程与科学,2000,22(1):18-20. 被引量:5
  • 10孙瑞祥,屈梁生.遗传算法优化效率的定量评价[J].自动化学报,2000,26(4):552-556. 被引量:32

二级参考文献24

  • 1段玉波,任伟建,霍凤财,董宏丽.一种新的免疫遗传算法及其应用[J].控制与决策,2005,20(10):1185-1188. 被引量:36
  • 2陈国良,遗传算法及其应用,1996年,5页
  • 3MichalewiczZ 周家驹 何险峰译.遗传算法+数据结构=演化程序[M].北京:科学出版社,2000..
  • 4方开泰.均匀设计表[EB/OL].http://www.math.hkbu.edu.hk/UniformDesign/,2000.
  • 5Rodolph G. Convergence Analysis of Canonical Genetic Algorithms[J]. IEEE Trans on Neural Network, 1994,5(1):86-90.
  • 6HOLLAND J H.Adaptation in Natural and Artificial Systems[M].Michigan:The University of Michigan Press,1975.
  • 7WANG F S,CHIOU J P.Optimal control and optimal time location problems of differential-algebraic systems by differential evolution[J].Industrial & Engineering Chemistry Research,1997,36(1):5348-5357.
  • 8MICHALEWICZ Z,JANIKOW C Z,KRAWCZYK J B.A modified genetic algorithm for optimal control problems[J].Computer Math Applications,1992,23(12):83-94.
  • 9WRIGHT A H.Genetic Algorithms for Real Parameter Optimization.Foundations of Genetic Algorithms[M].Rawlins G J E,EDS CA:Morgan Kaufmann,1991:205-218.
  • 10YAN X F,CHEN D Z,HU S X.Chaos-genetic algorithms for optimizing the operating conditions based on RBF-PLS Model[J].Computers and Chemical Engineering,2003,27(12):1393-1404.

共引文献72

同被引文献29

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2牛珏,温治,王俊升,陆岳障,赵全卿.大型辊底式连续热处理炉计算机优化控制系统[J].钢铁,2007,42(2):72-76. 被引量:10
  • 3吴亮红,王耀南,周少武,袁小芳.双群体伪并行差分进化算法研究及应用[J].控制理论与应用,2007,24(3):453-458. 被引量:47
  • 4SUYKENS J A K, VAN GESTEL T, DE BRABANTER J, et al. Least Squares Support Vector Manchine[M]. Singapore: World Scientific Publishing, 2002.
  • 5HOLLANDER F, ZUURBIER S P A. Development and performance of on-line computer control in a 3-zone reheating furnace[J]. Iron and Steel Engineer, 2002, 79(1): 44 - 52.
  • 6SUYKENS J A K, DE BRABANTER J, LUKAS L, et al. Weighted least squares support vector machine: robustness and sparse approxi-mation[J]. Neurocomputing, 2002, 48(1): 85 - 105.
  • 7KENNEDY J, EBERHART R C. Particle swarm optimization[C] //Proceedings of lEEE International Conference on Neural Networks. Piscatsway: 1EEE, 1995: 1942- 1948.
  • 8EBERHART R C, SHI Y. Guest editorial special issue on particle swarm optimization[J]. IEEE Transactions on Evolutionary Compu- tation, 2004, 8(3): 201 - 203.
  • 9SUYKENS J A K, VANDEWALLE J. Recurrent least squares sup- port vector machines[J]. Transactions on Circuits and Systems-l, 2000, 47(7): 1109- 1114.
  • 10SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293 - 300.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部