期刊文献+

基于动态压力变送器的输油管道泄漏检测与定位系统 被引量:12

Leak Detection and Positioning System of Oil Pipeline Based on Dynamic Pressure Transmitter
下载PDF
导出
摘要 设计了一套基于动态压力变送器的输油管道泄漏检测与定位系统,阐述了其系统组成和检测原理。通过动态压力变送器获取管道的动态压力信号,采用基于经验模态分解的方法提取信号的特征向量,再利用支持向量机实现对管道泄漏的识别。最后采用相关时延估计算法获得管道泄漏点的位置。通过现场应用实例表明,动态压力变送器具有更高的检测灵敏度和泄漏分辨力。该系统能够对管道泄漏进行正确识别,可以有效地降低误报警率,并提高了泄漏检测的灵敏度和定位精度。 A leak detection and positioning system of oil pipeline based on dynamic pressure transmitter is designed, and the system composition and testing principle are specified. Dynamic pressure signals along the pipeline can be obtained by dynamic pressure transmitter, and then the pipeline leak can be recognized by support vector machine (SVM) through the eigenvectors of the signals extracted by empirical mode decomposition (EMD). At last the position of leaking point is calculated by adopting the correlation time delay algorithm. The application examples show that the dynamic pressure transmitter has higher detection sensitivity and leak resolution. The system can identify the pipeline leak correctly,reduce false alarm rate effectively and improve detection sensitivity and positioning precision.
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第9期1347-1351,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金重点项目资助(60534050) 天津市自然科学基金项目资助(06YFJMJC02000)
关键词 管道 泄漏检测 动态压力变送器 经验模态分解 支持向量机 pipeline leak detection dynamic pressure transmitter empirical mode decomposition support vector machine
  • 相关文献

参考文献6

  • 1李炜,朱芸.长输管线泄漏检测与定位方法分析[J].天然气工业,2005,25(6):105-109. 被引量:55
  • 2靳世久,王立宁,李健,倪世坤,于明祥.原油管道漏点定位技术[J].石油学报,1998,19(3):93-97. 被引量:73
  • 3Chen Shili, Sun Yan, Wang Likun, et al. Development on Dynamic Pressure Monitoring Method and Sensor for Long Pipeline Leak Detection[C]//Proceedings of the 7th International Pipeline Conference, Calgary, Canada, 2008, Calgary, Canada: ASME, 2008.
  • 4Huang Norden E, Shen Zheng, Long Steven R, et al. The Empirical Mode Decomposition and Hilbert Spectrum For Nonlinear and Non-Stationary Time Series Analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998,454(1971) :903-995.
  • 5Hsu Chih- Wei, Lin Chih-Jen, A Comparison of Methods for Multiclass Support Vector Machines[J]. IEEE Transactions on Neural Networks, 2002,13 (2) : 415-425.
  • 6Li Jian,Wang Likun,Zhou Yan,Study on Detection Technique for Pipeline Leakage[J]. Transactions of Tianjin University, 2003,9(2) : 112-114.

二级参考文献37

  • 1张晓钟.油品储运检测诊断技术综述[J].油气储运,1995,14(6):44-47. 被引量:14
  • 2陈积懋.管道无损检测与评价技术[J].石油化工设备技术,1997,18(1):59-62. 被引量:20
  • 3陶洛文 方崇智.以辨识为基础的长输管线故障定位[J].清华大学学报,1986,26(2):69-75.
  • 4计通,石油消息,1995年
  • 5郑莹娜,仪器仪表学报,1991年
  • 6严大凡,输油管道设计与管理,1989年
  • 7李炜.基于小波变换的输气管道泄漏检测与定位方法研究[J].计算机工程与应用,2002,(9).
  • 8Marco Ferrante, Bruno Brunone. Pipe system diagnosis and leak detection by unsteady-state tests 2 wavelet analysis. Advance in water resources,2003;(26):107-116.
  • 9Beck S B M et al. Pipeline system identification through cross-correlation analysis. J Process Mechanical Engineering, 2002 ;(216).
  • 10Salvatore Belsito et al. Leak detection in liquefied gas pipelines by artificial neural networks. AIChE Journal ,1998;44(12).

共引文献122

同被引文献138

引证文献12

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部