摘要
利用锥与半序理论和混合单调算子理论,研究半序Banach空间中非混合单调算子方程组A(x,x)=x B(x,x)=x解的存在与唯一性,给出了收敛于算子方程组解的逼近迭代序列和误差估计,进而获得了非混合单调算子方程A(x,x)=x和非单调算子方程Ax=x的唯一解及其解的逼近迭代序列和误差估计,并改进和推广了有关文献中的相应结果.
With the cone and partial ordering theory and mixed monotone operator theory, the existence and uniqueness of the solution for the systems of the non-mixed montone operator equations {A(x,x)=x B(x,x)=x are studied, and the iterative sequences which converge to the solution for system of operator equations and the error estimations are given, and the iterative solution , the iterative sequences which converge to the solution and the error estimations of the non-mixed monotone operator equations A(x,x) = x and the operator equation Ax = x are also obtained. The results of some references are improved and extended.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2009年第4期478-483,共6页
Journal of Jiangxi Normal University(Natural Science Edition)
关键词
锥与半序
混合单调算子
算子方程组
迭代解
cone and partial ordering
mixed monotone operators
systems of operator equations
iterative solution