期刊文献+

算子方程x+THx=f的带误差的Ishikawa迭代解 被引量:2

The Ishikawa Iterative Process with Errors for the Solution of the Equation x+THx=f
下载PDF
导出
摘要 给出了L-S-次逆增生算子H的定义.在一致光滑Banach空间中建立了收敛于方程x+THx=f的带误差的Ishikawa迭代序列,其中T是k-次增生算子,H是L-S-次逆增生算子,推广和改进了一些已有结果. The concept of L-S-converse subaccretive operator is given. The strong convergence of Ishikawa iterative process with errors for a solution of the eqation x + THx =f is established, where T is a k-subaccretive operator, H is L-S-converes subaccretive operator in a uniformly smooth Banach space. Some well-known results are generalized.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2009年第4期488-493,共6页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 江西省自然科学基金(2007GQS0142)资助项目
关键词 K-次增生算子 L-S-次逆增生算子 带误差的Ishikawa迭代过程 k -subaccretive operator L-S-converes subaccretive operator Ishikawa iterative process with errors
  • 相关文献

参考文献12

  • 1徐承璋.含有k-次增生算子T的方程x+Tx=f的迭代解[J].应用泛函分析学报,2001,3(4):375-381. 被引量:23
  • 2Xu Y G. Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations [ J]. J Math Anal Appl, 1998,224:91-101.
  • 3Xu C Z. Mann iteration processes with errors for the solution of the nonlinear equation x + Tx =f[ J ]. J Southwest China Normal University, 2002,27 : 652 -657.
  • 4Zhu L. Iterative solution of nonlinear equations involving m-accretive operators in Banach spaces [ J]. J Math Appl, 1994,188: 410-416.
  • 5Chidume C E, Moore C. The solution by iteration of nonlinear equation in uniformly smooth Banach space [ J ]. J Math Anal Appl, 1997,215 : 132-146.
  • 6Wang G X, Wu C X. Theiteration solution of the equation f= x + Tx for an accretive operation T in Banach spaces [ J ]. Acta Aanl Fun Appl ,2002,2( 1 ) :15-20.
  • 7徐承璋.含有k-次增生算子T的方程x+Tx=f的带误差的Ishikawa迭代解[J].四川师范大学学报(自然科学版),2004,27(2):160-164. 被引量:3
  • 8Xu Z B, Roach G F. Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces [ J ]. J Math Anal Appl, 1991,157 : 189-210.
  • 9Reich S. An iterative procedure for constructing zeros of accretive sets in Banach spaces [ J ]. J Nonlinear Anal, 1978,2:85-92.
  • 10俞鑫泰.Banach空间几何理论[M].上海:华东师范大学出版社,1984..

二级参考文献14

  • 1Wang G X,应用泛函分析学报,2000年,2卷,1期,1520页
  • 2Ding X P,Chin J Math,1996年,24卷,4期,307页
  • 3Zhu L,J Math Anal,1994年,188卷,410页
  • 4Xu Z B,J Math Anal Appl,1991年,157卷,189页
  • 5Weng X L,Proc Amer Math Sot,1991年,113卷,727页
  • 6Chang S S, Cho Y J, Jung J S,et al. Iterative approximation of fixed point and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces. J Math. Anal. Appl., 1998, 224:149-165
  • 7Goebel K and Kirk W A. A fixed point theorem for asymptoticaly nonexpansive mappings. J. Proc. Amer. Math. Soc., 1972, 35(1): 171-174
  • 8Kirk W A. Fixed point theorem for non-Lipschitzian mappings of asymptotically nonexpansive type.Israel J. Math. ,1974, 11:339-346
  • 9Xu H K. Existence and convergence for fixed points of mappings of asymptotically nonexpansive type. J. Nonlinear Anal. TMA,1991, 16(12): 1139-1146
  • 10Schu J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. J. Bull. Austral. Math. Soc.,1991, 43:153-159

共引文献36

同被引文献24

  • 1曾六川.Banach空间中Reich-Takahashi迭代法的强收敛定理[J].数学学报(中文版),2005,48(3):417-426. 被引量:6
  • 2曾六川.Banach空间中一般的强增生算子方程解的迭代逼近[J].数学年刊(A辑),2005,26(4):577-584. 被引量:3
  • 3Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive mappings [J]. Proc Amer Math Soc, 1972, 35(1): 171-174.
  • 4Kirk W A. Fixed point theorem for non-Lipschitzian mappings of asymptotically nonexpansive type [J]. Israel J Math, 1974, 17(4): 339-346.
  • 5Zeng Luchuan. A note on approximating fixed points of nonex- pansive mapping by the Ishikawa iterative processs [J]. J Math Anal Appl, 1998, 226(1): 245-250.
  • 6Chang Shishen, Cho Y J, Kim J K, et al. Iterative approximation of fixed points for asymptotically nonexpansive types mappings in Banach space [J]. Pan-American Mathematical Journal, 2001, 11(3): 53-63.
  • 7Sun Zhaohong, He Chang. Iterative approximation of fixed points for asymptotically nonexpansive types mappings with er- ror member [J]. Acta Mathematica Sinica, chinese series, 2004, 47(4): 811-818.
  • 8Xu Hongkun. Inequalities in Banach space with applications [J]. Nonlinear Anal TMA, 1991, 16(12): 1127-1138.
  • 9Chang Shishen. Some problems and results in the study of nonlinear analysis [J]. Nonlinear Anal TMA, 1997, 30(7): 4197- 4208.
  • 10张文良,侯志彬,何震.一致凸B空间中非扩张映象具误差的Ishikawa迭代过程的收敛性[J].河北大学学报(自然科学版),2007,27(4):352-356. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部