摘要
介绍了采用BP神经网络模拟人脑智能拟合铁磁材料磁滞回线的方法,给出了实现磁滞回线拟合的BP神经网络结构模型.拟合结果表明,该方法拟合精度较高,对解决非线性拟合问题非常有效.
The method of using BP neural network to fit the magnetic hysteresis loop of ferromagnetic material, which imitates human brain's intelligence, is introduced. The BP neural network structure model to implement magnetic hysteresis loop fitting is given. The fitting result shows that the method has a higher accuracy and is effective to solve nonlinear fitting problem.
出处
《物理实验》
北大核心
2009年第9期32-34,38,共4页
Physics Experimentation
关键词
BP神经网络
磁滞回线
算法
BP neural networks
magnetic hysteresis loop
arithmetic