期刊文献+

三维多孔介质的热弹性动力问题研究 被引量:3

Research on Thermoelastic Dynamic Problems for Three Dimensional Porous Media
下载PDF
导出
摘要 在Biot理论的基础上,考虑了瞬态热弹性、热载荷影响因素,对在这一因素作用下的三维多孔介质的基本方程进行了推导.讨论了瞬态热弹性、热载荷作用下多孔介质4种情况的边界(即Phrear-atos-1~4)并进行了划分.分析了热载荷对渗透层介质力学性能的影响,从数学理论上论证了宏观固化Biot理论在有瞬态热载荷下的边界单元法格式,给出了在微孔压力下位移场的积分表达方式。 Based on Biot Theory and taking into account the effects of transient thermal loading or thermo-elasticity, the basic equations for three dimensional porous media are presented, and four types of boundary of porous media (Phrear-atos-1 ~ 4)under the action of transient thermal loading or thermo-elasticity are discussed. The analysis shows that the thermal loading has an important effect on the performance of the porous media. From the mathematical point of view, the form of the boundary element method for the macroscopic consolidation of Biot Theory under transient thermal loading is deducted, and integral representation of the displacement fields under pore pressure is obtained. Finally, the results obtained by using the methods are given.
作者 王建省
出处 《北方工业大学学报》 1998年第3期53-60,共8页 Journal of North China University of Technology
关键词 多孔介质 边界积分方程法 热弹性 动力问题 porous media boundary integral equation method thermo-elasticity Biot Theory transient thermal loading
  • 相关文献

参考文献1

  • 1M. E. Gurtin,Eli Sternberg. On the linear theory of viscoelasticity[J] 1962,Archive for Rational Mechanics and Analysis(1):291~356

同被引文献21

  • 1寥振鹏,李小军.推广的多次透射边界:标量波清形[J].力学学报,1995,27(1):69-78. 被引量:13
  • 2陈海,昕鄂秦,李凤蔚.高精度边界格式的研究[J].力学学报,1996,28(4):392-399. 被引量:2
  • 3应祖光,邱吉宝.基于固定界面与自由界面子结构模态的混成模态综合方法及其应用[J].计算力学学报,1997,14(1):64-68. 被引量:6
  • 4J Stefen. Uber einige Probleme der warmeleitung[J]. S-B Wien Akad. Mat. Natur., 1889,(98):173-484.
  • 5L Rubenstein. The stetan problem. American Math. Society[M]. Providence.R.I.1971.
  • 6J R Ockendon, W R Hodgkins. Moving boundary problems in heat flow and diffusion[M]. Clarendon press.Oxford.UK.1975 .
  • 7G S Cole. Transport processes and fluid flow in solidification[M]. American Socity for Metals. Metals Park.Ohio.1969.
  • 8D R Lynch, T M O'Neil. Continuously deforming finite elements for the solution of parabolic problems, with and without plase change[J]. Int. J. Numer. Methods. Eng.1981,(17):81-96.
  • 9M O Okuyiga, W H Ray. Modelling and estimation for a moving boundary problem[J]. Int. J. Num. Meth. Eng. 1985,(21):601-616.
  • 10M A Biot. General theory of 3-D consolidation[J]. J.Appl.Phys.1941,12: 155-164.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部