摘要
应用再生核理论,给出了一类二元函数的非多项式型的最佳Hermite插值逼近算子的具体表达式,并证明了它对散乱节点系的一致收敛性及误差在范数意义下的单调下降性.
By theory of reproducing kernel,the explicit representation of the best Hermite interpolation operators for a class of bivariate functions is given,which is not in the polynomial form;meanwhile,it is proved to be convergent uniformly to the system of scramble nodes,and the error of interpolation decreases monotonically in space norm
出处
《哈尔滨理工大学学报》
CAS
1998年第4期93-97,共5页
Journal of Harbin University of Science and Technology
基金
黑龙江省自然科学基金
关键词
再生核
插值逼近
一致收敛
reproducing kernel
interpolation approximation
convergence uniform