期刊文献+

一类非自治机械系统的混沌同步控制研究 被引量:3

STUDYING ON THE SYNCHRONIZATION CONTROL OF A CLASS OF NON-AUTONOMOUS MECHANICAL SYSTEM
下载PDF
导出
摘要 根据拉格朗日运动方程和牛顿力学定律,建立机械式离心调速器的动力学方程,运用数值仿真,研究受外部扰动的离心调速器系统动力学行为,该系统具有较复杂的动力学特性。利用系统的全局分岔图和李雅普诺夫指数谱,准确刻画出系统的局部动力学行为,并讨论离心调速器系统参数变化对机械系统运动状态的影响,由此得知该系统在适当参数下处于混沌运动。运用Poincaré映射图揭示该系统的Hopf分岔与混沌形成过程。基于Lyapunov稳定性理论,采用耦合反馈同步控制方法与自适应同步控制方法实现混沌同步,并给出实现自同步的条件及控制律参数的选取范围。最后运用数值仿真证实同步控制方法的有效性。 The dynamic equations of the centrifugal flywheel governor with external disturbance were established according to Lagrange equation of motion and Newton laws of mechanics. The dynamical behaviors of the centrifugal flywheel governor with external disturbance were investigated by numerical simulations, and the system exhibited exceedingly complicated dynamic behaviors. The influence of system parameter on the centrifugal flywheel govemor system was discussed through Lyapunov-exponents spectrum and global bifurcation diagram, which accurately portayed the partial dynamic behavior of the system. This was informed that it was chaotic with proper system parameters. The progress of the Hopf bifurcation and chaos forming of the centrifugal flywheel governor system were revealed by Poincare maps with different system parameters. Based on the Lyapunov stability theory, the chaos synchronization of the centrifugal flywheel governor was controlled by coupled-feedback control scheme and adaptive control scheme, the conditions and the range of controllers' parameters for self-synchronization of chaotic systems were obtained. Finally, the numerical illustrations showed the effectiveness of these methods.
出处 《机械强度》 CAS CSCD 北大核心 2009年第5期719-726,共8页 Journal of Mechanical Strength
基金 甘肃省自然科学基金项目(3ZS051-A25-030 3ZS-042-B25-049)~~
关键词 调速器 LYAPUNOV指数谱 HOPF分岔 POINCARÉ截面 混沌同步 耦合反馈同步 自适应同步 Centrifugal governor Lyapunov-exponents spectrum Hopf bifurcation Poincar~ maps Chaos synchronization Coupled-feedback synchronization Adaptive synchronization
  • 相关文献

参考文献11

二级参考文献17

  • 1陈保颖,包芳勋.连续混沌系统的混沌同步控制[J].动力学与控制学报,2004,2(4):14-18. 被引量:4
  • 2Chu F,Zhang Z.Bifurcation and chaos in a rub-impact Jeffcott rotor system.Journal of Sound and Vibration,1998,210(1):1-18.
  • 3Cveticanin L.Resonant vibration of nonlinear rotors.Mechanisms and Machine Theory,1995,31(5):581-588.
  • 4胡刚 萧井华 等.混沌控制[M].上海:上海科技教育出版社,2000..
  • 5Sanchez N E,Nayfeh A H.Global behavior of a biased non-linear oscillator under external and parametric excitations.Journal of Sound and Vibration,1997,207(2):137-149.
  • 6Leslie Ng,Richard Rand.Bifurcations in a Mathieu equation with cubic nonlinearities.Chaos Solitions and Fractals,2002,14:173-181.
  • 7Leslie Ng,Richard Rand.Bifurcations in a Mathieu equation with cubic nonlinearities:Part Ⅱ.Communications in Nonlinear Science and Numerical Simulation,2002,7:107-121.
  • 8Leslie Ng,Richard Rand.Bifurcations in a Mathieu equation with cubic nonlinearities.Nonlinear dynamics and stochastic mechanics.The 2000 ASME International Mechanical Engineering Congress Exposition November5-10,2000 Orlando,Florida.
  • 9Nayfeh A H,Mook D T.Nonlinear oscillations.New York:Wiley,1979.
  • 10Wiggins S.Introduction to applied nonlinear dynamical systems and chaos.New York:Springer-Verlag,1983.

共引文献111

同被引文献23

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部