期刊文献+

完全正则的广义圈乘半群

Completely Regular Generalized Adjoint Semigroups
下载PDF
导出
摘要 刻画具有完全正则的广义圈乘半群的环.证明了环R有一个广义圈乘半群R◇是群之并当且仅当R◇同构于一个Morita contextM(S,T,U,V)的由E11诱导的广义圈乘半群,其中S是广义根环,T是强正则环,VU=0,并且对于S的任意幂等元e,都有eU=Ve=0. Rings with a completely regular generalized adjoint semigroup are characterized. It is proved that a generalized adjoint semigroup R° of a ring R is a union of groups if and only if R° is isomorphic to the generalized adjoint semigroup induced by E11 of a Morita context М(S, T, U, V), where S is a generalized radical ring, T is a strongly regular ring, VU =0, and eU = Ve =0 for any idempotent e ∈ S.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第5期877-880,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:J0630104) 吉林大学"985工程"项目基金
关键词 圈乘半群 广义圈乘半群 群之并 广义根环 幂等元 adjoint semigroup generalized adjoint semigroup union of groups generalized radical ring idempotent element
  • 相关文献

参考文献8

  • 1Clark W E. Generalized Radical Rings [J]. Canad J Math, 1968, 20(1) : 88-94.
  • 2DU Xian-kun. The Structure of Generatlized Radical Rings [J]. Northeastern Math J, 1988, 4( 1 ) : 101-114.
  • 3DU Xian-kun. The Adjoint Semigroup of a Ring[J].Commun Algebra, 2002, 30(9) : 4507-4525.
  • 4Heatherly H E, Tucci R P. Adjoint Clifford Rings [ J]. Acta Math Hung, 2002, 95 : 75-95.
  • 5Kelarev A V. Generalized Radical Semigroup Rings [J].Southeast Asia Bull Math, 1997, 21 : 85-90.
  • 6Clifford A H, Preston G B. The Algebraic Theory of Semigroups [M]. Vol. 1. RI Providence: Amer Math Soc, 1961.
  • 7DU Xian-kun, WANG Jun-lin. Generalized Adjoint Semigroups of a Ring [J].Beitrage Alg Geo, 2006, 47 ( 1 ) : 211-228.
  • 8DU Xian-kun, WANG Jun-lin. Regular Generalized Adjoint Simigroups of a Ring[J]. Beitrage Alg Geo, 2006, 47 ( 1 ) : 229-247.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部