期刊文献+

基于完全级联传播模型的社区影响最大化 被引量:6

Community Influence Maximizing Based on Comprehensive Cascade Diffuse Model
下载PDF
导出
摘要 基于社会网络的社区结构特性和网络中个体间的相互影响,通过引入社区影响最大化的概念,并根据节点间相互影响强度的动态变化,提出一种新的影响传播模型:完全级联传播模型.利用该传播模型进行社区影响最大化研究,在安然邮件数据集上对该传播模型和独立级联模型进行实验对比,结果表明了该模型在社区影响最大化上应用的有效性. In consideration of the community structure existing in social network and individual's interaction, we introduced the concept of community influence maximization. Furthermore, the influence probability among nodes may change due to the dynamic change of the interaction' s intensity between the nodes. Thus, in this paper, the authors will propose a new diffuse model named comprehensive cascade model and use this model to study community influence maximization. Through the experiments on Enron email dataset, we compared the model' s performance with independent cascade' s. The result shows that the model is feasible in the community influence maximization.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第5期1032-1034,共3页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:60673099 60873146) 国家高技术研究发展计划863项目基金(批准号:2007AA04Z114 2009AA02Z307)
关键词 社区影响最大化 传播模型 感染力 community influence maximizing diffuse model contagion
  • 相关文献

参考文献7

  • 1Domingos P, Richardon M. Mining the Network Value of Customers [ C]//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. California: ACM, 2001: 57-66.
  • 2Richardson M, Domingos P. Mining Knowledge-sharing Sites for Viral Marketing [ C ]//Proceedings of the Eighth Intl Conf on Knowledge Discovery and Data Mining. Alberta: ACM, 2002: 61-67.
  • 3Radicchi F, Castellano C, Cecconi F, et al. Defining and Identifying Communities in Networks [ J ]. PNAS, 2004, 101 (9) : 2658-2663.
  • 4才华,周春光,卢廷玉,王喆.重叠社区结构的挖掘算法[J].吉林大学学报(工学版),2009,39(4):1035-1040. 被引量:4
  • 5周春光,曲鹏程,王曦,王建宇,王喆.DSNE:一个新的动态社会网络分析算法[J].吉林大学学报(工学版),2008,38(2):408-413. 被引量:10
  • 6Kempe D, Kleinberg J, Tardos E. Maximizing the Spread of Influence through a Social Network [ C ]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington: ACM, 2003: 137-146.
  • 7Kempe D, Kleinberg J, Tardos E. Influential Nodes in a Diffusion Model for Social Networks [M]. Berlin: Springer, 2005, 3580: 1127-1138.

二级参考文献13

  • 1刘婷,胡宝清.基于聚类分析的复杂网络中的社团探测[J].复杂系统与复杂性科学,2007,4(1):28-35. 被引量:16
  • 2Sarkar Purnamrita, Moore Andrew W. Dynamic social network analysis using latent space models[C] //ACM SIGKDD' 05 Explorations, New York, USA: ACM Press, 2005.
  • 3Berger-wolf Tanya Y,Saia Jared. A framework for analysis of dynamic social networks[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD'06. New York, USA : ACM Press, 2006.
  • 4Hoff Peter D,Raftery Adrian E, Handcock Mark S. Latent space approaches to social network analysis [J]. Journal of the American Statistical Association, 2002,97 (460) : 1090-1098.
  • 5Eubank S, Guclu H, Kumar V, et al. Modelling disease outbreaks in realistic urban social networks[J]. Nature, 2004,429 ( 6988) : 180-184.
  • 6Kretzschmar M, Morris M. Measures of concurrency in networks and the spread of infectious disease[J]. Math Biosci,1996,133(2) :165-195.
  • 7Krebs Valdis E. Mapping networks of terrorist cells [J]. Connections, 2002,24 (3) : 43-52.
  • 8Hoff Peter D. Modeling dependencies in international relations networks [J]. Political Analysis, 2004, 12 (2) :160-175.
  • 9Ward M D, Hoff P D, Lofdahl C L. Identifying international networks:latent spaces and imputation[C] //Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers. Washington D C: National Academies Press,2003.
  • 10Breiger R L, Boorman S A, Arabic P. An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling[J]. Journal of Mathematical Psychology, 1975,12 : 328-383.

共引文献11

同被引文献161

引证文献6

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部