摘要
设X是实序列完备的局部凸拓扑向量空间,Y是拓扑向量空间.设T:X→2Y是凸过程(ConvexProcess),且它的定义域Dom(T)是X的闭子空间.本文证明了若对X上的每一可分子空间M,T在M上的限制是绝对可测的,则T是有界的.
Let X be a real sequentially complete locally convex spaceLetT:X→2Y be a convex processSuppose that the domain Dom(T) of T is a closed subspace of X In this paper we show that for every separable subspace M of X ,if the restriction T|Dom(T)∩Mis absolutely measurable,then T is bounded
出处
《华南师范大学学报(自然科学版)》
CAS
1998年第3期81-84,共4页
Journal of South China Normal University(Natural Science Edition)
基金
广东省自然科学基金
关键词
集值映射
凸过程
有界性
可测性
拓扑向量空间
set-value map
conver process
sequentially complete locally conver space
absolutely measurable