期刊文献+

一种改进均方误差性能的新型鲁棒性波束形成算法 被引量:2

A new robust adaptive beamforming with improved mean-squared error performance
下载PDF
导出
摘要 结合信干噪比最大化和均方误差最小化两个优化目标,提出一种新型的鲁棒性波束形成算法。该方法考虑信号估计误差,在传统的最小方差的代价函数中引入信号协方差矩阵的估计误差,并在波达角估计误差的约束下,将鲁棒性波束形成器转换成基于支持向量机形式的波束形成器,通过一种高效的新型支持向量机训练算法计算阵列权值;然后以均方误差最小化为目标来修正阵列权值。仿真结果表明:该方法降低了波束形成器对信号估计误差的敏感度,提高了其抑制非平稳干扰的能力,且具有更好的均方误差性能。 This paper presents a new kind of robust beamforming method that provides joint improvement of SINR and MSE. We generalize the conventional linearly constrained minimum variance cost function by including the error matrix of signal covariance matrix and error constraints of DOA. The final cost function adopts the form of a support vector machine (SVM) for regression. To compute the beamformer weights, we adopt a computationally efficient Learning Algorithm for a new Regression SVM. Then we choose coefficient of beamformer vector to minimize the MSE. Computer simulations demonstrate an improved performance in comparison with other robust beamforming techniques.
出处 《电波科学学报》 EI CSCD 北大核心 2009年第4期655-659,共5页 Chinese Journal of Radio Science
关键词 鲁棒性 自适应波束形成 信号估计误差 非平稳干扰 支持向量机 均方误差 robust adaptive beamforming signal mismatch interference nonsta-tionarity support vector machine MSE
  • 相关文献

参考文献11

  • 1CARLSON B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays [J]. IEEE. Trans. Aerosp. Electron. Syst. , 1988, 24: 397-401.
  • 2VOROBYOV S A, GCRSHMAN A B and LOU Z. Robust adaptive beamfoming using worst-case performance optimization: A solution to the signal mismatch problem[J]. IEEE Trans. Sig. Proe. 2003, 51 (2) : 313- 324.
  • 3MESTRE X and LAGUNAS M A. Finite sample size effect on minimum variance beamformers: Optimum diagonal loading factor for large arrays [J]. IEEE Trans. Signal Process., 2006, 54(1): 69-82.
  • 4WANG J, FENG Q and WU R B, et al. Robust constant-beamwidth beamforming based on focusing approach for acoustic imaging[C]//The 33rd Annual International Symposium on Computer Architecture Boston MA UAA, 2006: 821-826.
  • 5FELDMAN D and GRIFFITHS L J. A projection approach for robust adaptive beamforming[J]. IEEE Trans. Sig. Proc., 1994, 42(4): 867-876.
  • 6LIU L, GERSHMAN A B, LOU S and WONG S M. Adaptive beamforming with sidelobe control: A second-order cone programming approach[J]. IEEE Sig. Proc. Letters, 2003, 10(11): 331-334.
  • 7WANG F, BALAKRISHNAN V, ZHOU P Y, et al Optimal array pattern synthesis using semidefinite programming[J]. IEEE Trans Sig. Proc. , 2003, 51(5) :1172-1183.
  • 8GAUDES C C, SANTAMARIA I and VIA J, et al. Robust array beamforming with sidelobe control using support vector machines [J]. IEEE Trans. Sig. Proc. , 2007, 55(2): 574-584.
  • 9胡航,邓新红.子阵级平面相控阵ADBF的旁瓣抑制方法[J].电波科学学报,2008,23(1):201-205. 被引量:15
  • 10ELDARYC, NEHORAIA, ROSAPSL. A competitive mean-squared error approach to beamforming [J]. IEEE Trans. Sig. Proe. , 2007, 50(11): 5143- 5154.

二级参考文献12

  • 1胡航,景秀伟,潘向荣.二维子阵级相控阵空间谱估计方法[J].电子学报,2007,35(3):415-419. 被引量:16
  • 2胡航,景秀伟.基于近似理想方向图的子阵级超分辨测向方法[J].电波科学学报,2007,22(4):646-651. 被引量:12
  • 3Vapnik V N.The nature of statistical learning theory[M].New York:Springer,1995:85-90.
  • 4Vijayakumar S.Sequential Support Vector Classifiers and Regression[C].Proc.International Conference on Soft Computing (SOCO'99),Palazzo Ducale in Genova,Italy,1999:610-619.
  • 5Mangasarian O L,Musicant D R.Lagrangian support vector machines[J].Journal of Machine Learning Research,2001(1):161-177.
  • 6Lawrence K,Saul F S.Multiplicative updates for nonnegative quadratic programming in support vector machines[C].Sebastian Thrun Suzanna Becker,Klaus Obermayer,editors,Advances in Neural Information Processing Systems 15,Cambridge,MA:MIT Press,2003:150-156.
  • 7U Nickel. Subarray configurations for interference suppression with phased array radar [C].Proc. International Conference on Radar, 1989, Paris, France: 82-86.
  • 8U Nickel. Subarray configurations for digital beamforming with low sidelobes and adaptive interference suppression[C]. Proc. IEEE International Radar Conference,1995, Alexandria,USA: 714-719.
  • 9P Lombardo, D Pastina. Pattern control for adaptive antenna processing with overlapped sub-arrays [C]. Proc. International Conference on Radar, 2003, Adelaide, Australia: 188-193.
  • 10O L Frost. An algorithm for linearly constrained adaptive array processing [J]. Proc. IEEE,1972, 60(8):926-935.

共引文献20

同被引文献23

  • 1杨锋,奚宏生,杨坚,盛延敏,吴春旭.基于自适应拟牛顿法的CDMA天线阵列波束形成[J].电波科学学报,2006,21(3):371-376. 被引量:2
  • 2王丽娜,王兵,周贤伟.一种新的智能天线波束形成算法[J].电波科学学报,2007,22(2):351-354. 被引量:12
  • 3ATTAR A, GHORASHI S A, SOORIYABANDARA M, et al. Challenges of real-time secondary usage of spectrum[J]. Computer Networks, 2008, 52(4)..816- 830.
  • 4HUANG S H, DING Z, LIU X. Nonintrusive cognitive radio networks based on smart antenna technology. IEEE GLOBECOM 2007 [C]/// 26-30 November 2007: 4862-4867, Washington, DC, USA.
  • 5ISLAM H, LIANG Y C , HOANG A T. Joint beamforming and power control in the downlink of cognitive radio networks. IEEE Wireless Communications Networking Conference [ C] // Hongkong, China, 2007.
  • 6ZHANG Lan, LIANG Yin-ehang, XIN Yan. Joint beam forming and power allocation for multiple access channels in cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2008, 26 (1) : 38-51.
  • 7ZHANG Rui,LIANG Yingchang. Exploiting multi-an-tennas for opportunistic spectrum sharing in cognitive radio networks [J] . IEEE Journal of Selected Topics in Signal Processing, 2008, 2 (1):88-102.
  • 8JAFAR S A, SRINIVASA S. Capacity limits of cognitive radio with distributed and dynamic spectral ac- tivity[J]. IEEE Journal on Selected Areas in Communications, 2007, 25 (3):529-537.
  • 9YU W, LAN T. Transmitter optimization for th multi-antenna downlink with per-antenna power con straints [J]. IEEE Transaetion on Signal Processing, 2007, 55(6):2646-2660.
  • 10Chang L, Yeth C C. Performance of DMI and eigenspace-based adaptive array beamformers[Jl. IEEE Trans on Antennas and Propagation, 1996, 44(5) :665-671.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部