摘要
设X是一致凸Banach空间,且满足Opial条件或其范教是Frechet可微的,C是X的有界闭凸子集,T:C→C渐近非扩张映象。证明了,若序列是T的几乎轨道且满足,则,弱收敛到T的一个不动点。
Let X be a uniformly convex Banach space which satisfies Opial's condition or whose norm is Frechet differentiable, C be a bounded closed convex subset of X, and T: C→C be an asymptotically nonexpansive mapping. It is proven that if {xn}∞n=0 is an almostorbit of T satisfyinglimm→∞lim supn→∞||xn+m - xn ||= 0then the Sequence {xn} convcyes weakly to a fixed point of T.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第3期21-26,共6页
Journal of East China Normal University(Natural Science)
基金
上海市高等学校青年科学基金