期刊文献+

茶树新梢中非酯型儿茶素及其合成酶的变化规律 被引量:14

Study on the Changes of Non-galloylated Catechins and Relative Enzymes in Tea Shoots
下载PDF
导出
摘要 对不同季节茶树新梢不同部位鲜叶中儿茶素组分和非酯型儿茶素合成酶的变化规律进行了研究。结果表明,在茶树新梢上,从芽到第四叶,四种非酯型儿茶素中除了GC外,C、EC和EGC含量均逐步增加;两种非酯型儿茶素合成酶中,DFR/LAR活性呈下降趋势,而ANR在第三叶中达到最高。相关分析进一步表明,不同部位鲜叶中儿茶素的总量变化与DFR/LAR活性变化呈显著正相关,而与ANR变化相关性不大。 The changes of non-galloylated catechins and relative enzymes as well as the composition of catechins in different parts of tea shoots and in different seasons were investigated in this paper. The results showed that the contents of non-galloylated catechins except GC increased gradually from bud to the fourth leaf. Both of two synthetical enzymes related to non-galloylated cahechins, the activity of DFR/LAR declined gradually, but the activity of ANR was the highest in the third leaf. The result of correlation analysis showed that the contents of total catechins in different tea leaves presented a prominent positive correlation with the activity of DFR/LAR, but not with the activity of ANR.
出处 《茶叶科学》 CAS CSCD 北大核心 2009年第5期365-371,共7页 Journal of Tea Science
基金 国家"973"前期研究计划(2007CB116211) 国家自然科学基金(30771755) 安徽省自然科学基金(090411006)
关键词 茶树 非酯型儿茶素 不同季节 生物合成 tea plant [Camellia sinensis (L.) O. Kuntze], non-galloylated catechins, different seasons, biosynthesis
  • 相关文献

参考文献10

  • 1Shirley BW. Flavonoid biosynthesis:A colorful model for genetics, biochemistry, cell biology, and biotechnology [J]. Plant Physiol, 2001, 126: 485-493.
  • 2Stafford H A, Lester H H. The conversion of (L)- dihydromyricetin to its flavan-3,4-diol (leucodelphinidin) and to (L)-gallocatechin by reductase extracted from tissue cultures of Ginkgo biloba and Pseudotsuga menziesii[J]. Plant Physiol, 1985, 78: 791-794.
  • 3Punyasiri PAN, Abeysinghe ISB, Kumar V. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch Biochem Biophy, 2004, 431: 22-30.
  • 4Xie DY, Sharma SB, Paiva NL, et al. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis[J]. Science, 2003, 299: 396-399.
  • 5Xie DY, Jackson LA, Cooper JD, et al. Paiva NLMolecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant physiol,2004, 134:979-994.
  • 6Xie DY, Sharma SB, Dixon RA. Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana[J]. Arch Biochem. Biophys, 2004, 422: 91-102.
  • 7Hayashi M, Takahashi H, Tamura K, et al. Enhanced dihydroflavonoi-4-reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice[J]. PNAS, 2005, 102: 7020-7025.
  • 8Mamati G. E, Liang Y, Lu J. Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols[J]. J Sci Food Agric, 2006, 86: 459-464.
  • 9Li H H, Flachowsky H, Fischer TC, et al. Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.) [J]. Planta, 2007, 226: 1243-1254.
  • 10Bogs J, Downey M O, Harvey J S, et al. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves[J]. Plant Physiology, 2005, 139: 652-663.

同被引文献185

引证文献14

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部