摘要
研究基于顶点集V=∪ir=1Vi(其中|Vi|=t,i=1,2,…,r)的完全r部图Kr(t)的3圈和2k圈{C3,C2k}-强制分解(k≥4)的存在性问题.通过构造并运用Kr(t)的两种分解法,证明了Kr(t)的{C3,C2k}-强制分解(k≥4)的渐近存在性,即对于任意给定的正整数k≥4,存在常数r0(k)=5k+2,使得当r≥r0(k)时,Kr(t)的{C3,C2k}-强制分解存在的必要条件也是充分的.
In this paper, the existence problem of a{Ca,C2k}-mandatory decomposition of Kr(t) was discussed. Through constructing and applying two decomposition methods of Kr(t), the paper proved that the necessary conditions for the existence of a {C3, C2k }-mandatory decomposition of Kr (t)(k ≥ 4) are also sufficient whenever r ≥ 5k+2.
出处
《纯粹数学与应用数学》
CSCD
2009年第3期470-474,490,共6页
Pure and Applied Mathematics
基金
江苏省教育厅高校"青蓝工程"基金(苏教师[2005]12)
关键词
完全多部图
强制圈分解
渐近存在性
complete multipartite graphs, mandatory decomposition, cycles