期刊文献+

基于特征点选择的聚类算法研究 被引量:1

A clustering algorithm based on feature point selection
原文传递
导出
摘要 针对当前数据挖掘中对数值型数据聚类方法的不足,提出了基于特征点选择的聚类算法(clustering algorithmbased on Feature Point Selection,CFPS)。CFPS算法可以克服需要输入聚类数量的缺陷,算法本身可以找到簇的最佳数量,使聚类的精度和效率得到大大提高。实验结果表明该方法对数值型数据聚类方法具有借鉴意义和深入研究的价值。 A clustering algorithm based on Feature Point Selection in Data Mining (abbreviated CFPS) is put forward in this paper. This method can overcome the disadvantage of a algorithm which requires the number of clusters for numerical incoming data. The CFPS algorithm finds the optimal number of clusters, and greatly improves the precision and efficiency of clustering. The results of experiments prove that using the algorithm for the numerical data clustering method is feasible, which is valuable for further study in more depth.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第9期40-42,46,共4页 Journal of Shandong University(Natural Science)
关键词 聚类 K均值 数据挖掘 clustering k-means data mining
  • 相关文献

参考文献7

  • 1韩家炜[加],堪博.数据挖掘概念与技术[M].2版.范明,孟小峰,译.北京:机械工业出版社,2007.
  • 2MAGIDSON J, VERMUNT J K. latent class modeling as a probabilistic extension of K-means clustering[ J ]. Quirk's Marketing Research Review, 2002: 77-80.
  • 3ALl M N, STOREY C. Topographical multilevel single linkage [J]. Journal of Global Optimization 5, 1994: 349-358.
  • 4LAGACHERIE P, CAZEMIER D R, van GAANS P F, et al. Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area[J]. Geoderma, 1997, 77 (2) : 197-216.
  • 5MAGIDSON, VERMUNT J K. Latent class models for clustering: a comparison with k-means[J]. Canadian Journal of Marketing Research, 2002, 20:36-43.
  • 6LLOYD-WILLIAMS M. Discovering the hidden secrets in your data-the data mining approach to information[ J]. Information Research, 1997, 3(2). Available at: http://informationr. net/ir/3-2/paper36, html.
  • 7VERMUNT J K. Latent subspace clustering of high dimensional data for data mining application [ J ]. Quirk' s Marketing Research Review, 2008: 123-137.

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部