期刊文献+

二阶非线性摄动微分方程的振动性与渐近性

Oscillatory and asymptotic behavior for a second order nonlinear differential equation with perturbation
原文传递
导出
摘要 研究了一类二阶非线性摄动微分方程解的振动性与渐近性,建立了五个新的振动性与渐近性定理,推广和改进了已知的一些结果。 Some criteria for the oscillation and asymptotics of a class of the second-order nonlinear differential equation with perturbation are studied. The results generalize the known results.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第9期75-83,共9页 Journal of Shandong University(Natural Science)
关键词 二阶 非线性 摄动微分方程 振动性 渐近性 second order nonlinear differential equation with perturbation oscillation asymptotic
  • 相关文献

参考文献6

  • 1张全信,燕居让.一类二阶非线性阻尼微分方程的振动性[J].系统科学与数学,2004,24(3):296-302. 被引量:35
  • 2燕居让,张全信.二阶非线性阻尼常微分方程的振动性定理[J].系统科学与数学,1993,13(3):276-278. 被引量:16
  • 3CECCHI M, M_A.RIM M. Oscillatory and nonoscillatory behavior of a second order functional differential equation[J]. Rocky Mount J Math, 1992(22) : 1259-1276.
  • 4ROGOVCHENKO Yu V. On oscillation of a second order nonlinear delay differential equation[J]. Funkcial Ekvac, 2000(43): 1-29.
  • 5YAN J. Oscillation theorems for second order linear differential equations with damping[J]. Proc Amer Math Soc, 1986(98) :276-282.
  • 6LADDE G S, LAKSHMIKANTHAM V, ZHANG B G. Oscillation theory of differential equations with deviating arguments[M] New York: Marcel Dekker, 1987.

二级参考文献6

  • 1燕居让,张全信.二阶非线性阻尼常微分方程的振动性定理[J].系统科学与数学,1993,13(3):276-278. 被引量:16
  • 2燕居让,Proc Amer Math Soc,1986年,98卷,276页
  • 3Rogovchenko Yu V. On oscillation of a second order nonlinear delay differential equation. Funkcial.Ekvac. 2000, 43: 1-29.
  • 4Jurang Yan. Oscillation theorems for second order linear differential equations with damping.Proc. Amer. math. Soc., 1986, 98: 276-282.
  • 5Cecchi M and Marini M. Oscillatory and nonoscillatory behavior of a second order functional differential equation. Rocky Mount. J. Math., 1992, 22: 1259-1276.
  • 6Ladde G S, Lakshmikantham V, and Zhang B G. Oscillation Theory of Differential Equations with Deviating Arguments. Marcel Dekker, New York, 1987.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部