期刊文献+

一种基于Web挖掘的音乐流派分类方法

A Web Mining based Method for Music Genre Classification
下载PDF
导出
摘要 本文提出一种基于web挖掘的音乐流派分类方法,以Last.fm2音乐网站的用户标签为特征进行音乐艺术家的相似性比较,并依据艺术家间的相似度进行流派分类。其中,艺术家间的相似度通过计算标签的共现(co-occurrence)获得,音乐流派分类使用k最近邻(k-NN)方法。实验表明,使用音乐标签对音乐艺术家进行流派分类,能获得较高的准确率,本文提出的方法优于文献提出的基于web挖掘的音乐流派分类方法,将分类准确率由89.5%提高到95%。 In this paper, we present a music genre classification method based on web mining. We propose a similarity calculation and genre classification measure for music artists with the use-defined tags from Last.fm. Similarities between artists are calculated based on tag co-occurrence. The k-nearest neighbor algorithm (k-NN) has been used to classify the music genre. Experiments show that tags are effective to characterize similarities between artists and the proposed approach outperforms the previous web mining approaches in artist genre classification with the average accuracy of 95%, compared with 89.5% of.
出处 《微计算机信息》 2009年第27期168-169,174,共3页 Control & Automation
基金 基金申请人:倪宏 项目名称:国家"十一五"科技支撑计划"中国互动新媒体网络与新业务科技工程" 基金颁发部门:中华人民共和国科学技术部(2008BAH28B04)
关键词 音乐 分类 WEB挖掘 Music Classification Web Mining
  • 相关文献

参考文献7

  • 1Markus Schedl, Peter Knees, and Gerhard Widmer. A Web- Based Approach to Assessing Artist Similarity using Co- Occurrences. In Proceedings of the 4th International Workshop on Content-Based Multimedia Indexing (CBMI 2005), Riga, Latvia, June 2005.
  • 2P. Knees, E. Pampalk, and G. Widmer. Artist classification with web-based data. In Proceedings of the 5th International Symposium on Music Information Retrieval (ISMIR' 04), Barcelona, Spain, October 2004, pp. 517-524.
  • 3G. Geleijnse, M. Schedl, P. Knees. The Quest For Ground Truth in Musical Artist Tagging in The Social Web Era. In Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR' 07), Vienna, Austria, September 2007.
  • 4G. Tzanetakis, P. Cook. Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing 10 (5), 2002, pp. 293-302.
  • 5彭曙蓉,王耀南.针对小文本的Web数据挖掘技术及其应用[J].微计算机信息,2006,22(07X):203-205. 被引量:10
  • 6F. Pachet, G.Westerman, and D. Laigre. Musical Data Mining for Electronic Music Distribution. First International Conference on Web Delivering of Music, 2001, pp. 101"106.
  • 7M. Schedl, P. Knees, T. Pohle, and G. Widmer. Towards an Automatically Generated Music Information System via Web Content Mining. In Proceedings of the 30th European Conference on Information Retrieval (ECIR'08), Glasgow, Scotland, March 2008, pp.585-590.

二级参考文献6

  • 1彭曙蓉,章兢,杨文忠.MD5算法在消除重复网页算法中的应用[J].电脑知识与技术,2005(10):15-16. 被引量:5
  • 2Gudivada VN. Information retrieval on the World Wide Web[J].IEEE Internet Computing, 1997,1(5):58-68
  • 3Eghbalnia, Hamid; Assadi, Amir. An application of suppert vector machines and symmetry to computational modeling of perception through visual attention[J]. Neurocomputing,2001 (38-40):1193-1201
  • 4Trotman, Andrew. Choosing document structrue weights[J]. Information Processing and Management,2005,2:243-264
  • 5Rigutini, L.; Maggini, M.. A Combined Approach of Formal Concept Analysis and Text Mining for Concept Based Document Clustering[A]. Proceedings. The 2005 IEEE/WIC/ACM International Conference on Web Intelligence[C]. France: Compiegne University of Technology, 2005,19-22:330-333
  • 6汤效琴,戴汝源.数据挖掘中聚类分析的技术方法[J].微计算机信息,2003,19(1):3-4. 被引量:87

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部