期刊文献+

一种用于入侵检测的改进人工免疫算法 被引量:3

Improved Artificial Immune Algorithm Used in Intrusion Detection
下载PDF
导出
摘要 通过对基于信息熵和基于欧氏距离的免疫算法的分析和改进,提出一种新的适用于入侵检测的人工免疫算法(AIAID)。该算法引入马氏距离的思想,改进相似度和期望繁殖率的计算,把抗体不同特征的重要性和取值范围加入到相关运算中,对算法流程进行优化。设计一种新的基于AIAID的入侵检测系统模型。实验表明,将AIAID用于入侵检测能够明显缩短训练时间,提高检测效率。 By analyzing and improving the artificial immune algorithm based on information entropy and Euclidean distance, a novel Artificial Immune Algorithm based on intrusion Detection(AIAID) is proposed. The algorithm lies on improving the calculation about similarity and expected breed rate by the principle of Mahalanobis distance, namely introducing the importance and value range of antibody characteristics into correlation computing, and algorithm flow is optimized. A new model for intrusion detection system is designed by using AIAID. Tests indicate that using AIAID in intrusion detection can obviously shorten training time and improve detection efficiency.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第18期145-147,共3页 Computer Engineering
基金 国家部委科研基金资助项目
关键词 免疫算法 信息熵 入侵检测 权重 immune algorithm information entropy intrusion detection weight
  • 相关文献

参考文献6

  • 1Abraham A, Grosan C. Evolutionary Design of Intrusion Detection Programs[J]. International Journal of Network Security, 2007, 4(3): 328-339.
  • 2Stenen H, Stephanie F. Architecture for an Artificial Immune System[J]. Evolutionary Computation, 2000, 7( 1): 1289-1296.
  • 3Bentley P, Km J. Immune Memory in the Dynamic Clonal Selection Algorithm[C]//Proc. of the 1 st International Conference on Artificial Immune Systems. Canterbury, UK: [s. n.], 2002: 57-65.
  • 4Fukuda T, Mori K, Tsukiyama M. Parallel Search for Multi-modal Function Optimization with Diversity and Learning of Immune Algorithm[C]//Proc. of Artificial Immune Systems and Application Conference. Berlin, Germany: Spring-Verlang, 1999: 210-220.
  • 5郑日荣,毛宗源,罗欣贤.基于欧氏距离和精英交叉的免疫算法研究[J].控制与决策,2005,20(2):161-164. 被引量:31
  • 6Mukkamala S, Sung A H. Identifying Significant Feature for Network Forensic Analysis Using Artificial Intelligent Techniques[J]. International Journal of Digital Evidence, 2003, 1(4): 1-17.

二级参考文献3

  • 1Toyoo Fukuda, Kazuyuki Mori, Makoto Tsukiyama.Parallel search for multi-modal funetion optimization with diversity and learning of immune algorithm[Al.Artificial Immune Systems and Their Applications[C ].Springer, 1998 : 210-220.
  • 2Digalakis J G, Margaritis K G. An experimental study of benehmarking functions for Genetic Algorithms[A].2000 IEEE Int Conf on Systems, Man and Cybernetics[C]. Nashville ,2000; 3810-3815.
  • 3郑日荣,毛宗源,罗欣贤.改进人工免疫算法的分析研究[J].计算机工程与应用,2003,39(34):35-37. 被引量:27

共引文献30

同被引文献19

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部