摘要
蚁群系统能够通过自适应调整不断优化算法的性能。为寻求算法自适应过程的内部规律,结合旅行商问题,采用参数控制、设置信息素范围的方法进行探讨。通过调控信息素的变化,以及对信息素最值、分布状态的统计分析,揭示算法优化过程的内部状态。实验表明,改进后的算法更稳定,问题解的搜索能力更强。
Ant Colony System(ACS) can develop excellent performance via self-adaptive behavior. In order to find the internal rules of self- adaptive behavior, this paper introduces parameter-control and sets pheromone's range, which are applied to the Traveling Salesman Problem(TSP). The ACS internal state is revealed via pheromone's micro-control and statistical analysis of pheromone's most values and distribution. Experimental results prove that the improved ACS does well in stability and searching solution.
出处
《计算机工程》
CAS
CSCD
北大核心
2009年第18期194-197,共4页
Computer Engineering
关键词
蚁群系统
自适应
参数控制
信息素
旅行商问题
Ant Colony System(ACS)
self-adaptive
parameter-control
pheromone: Travelling Salesman Problem(TSP)