期刊文献+

基于改进的自组织神经网络的基因剪切位点的识别

Recognition of the splice sites based on improved self-organizing feature maps
原文传递
导出
摘要 为提高基因序列中剪切位点的识别率,将无先导卡尔曼滤波器(UKF)和自组织神经网络(SOFM)相结合,给出一种非线性高维数据的聚类算法。利用无先导变换(UT)参数化SOFM邻域宽度函数的均值和方差,并采用UKF进行预测,完成SOFM参数的自适应过程。该算法用于基因剪切位点的识别结果表明:较SOFM与EKF参数自适应方法,该算法识别精度较高,验证了其有效性和可行性。 A clustering method for large quantities of high-dimensional data which combining unscented Kalman filter (UKF) with self-organizing feature maps (SOFM) was proposed to improve the recognition accuracy of splice sites among the gene sequences. The mean and variance of width of the neighborhood function were parameterized by unscented transform (UT) and then predicted by UKF to complete adaptive process of SOFM parameters. Tests on recognizing gene splice sites show that the proposed method has higher recognition accuracy comparing with SOFM and EFK-based parameter selfadaptive methods, which verifies its validity and feasibility.
出处 《大连海事大学学报》 CAS CSCD 北大核心 2009年第3期61-64,共4页 Journal of Dalian Maritime University
基金 国家自然科学基金资助项目(60671061)
关键词 自组织神经网络(SOFM) 剪切位点 卡尔曼滤波器 (KF) 扩展卡尔曼滤波器(EKF) 无先导卡尔曼滤 波器(UKF) self-organizing feature maps (SOFM) splice sites kalman filter (KF) extend Kalman filter (EKF) unscented Kalman filter(UKF)
  • 相关文献

参考文献10

  • 1HAYKIN S. Neural Networks: A Comprehensive Foundation[ M]. 2nd ed. USA:Pearson Education, 1999.
  • 2YANG Xing-jun, ZHENG Jun-li. Artificial Neural Network and Blind Signal Processing[ M]. Beijing.Tsinghua University Press, 2003.
  • 3KOHONEN T, SCHROEDER M R, HUANG T S. SefOrganizing Maps[ M ]. 3rd ed. USA: Springer, 2001.
  • 4HAESE K. Self-organizing feature maps with self-adjusting learning parameter [ J ]. IEEE Transaction on Neural Networks, 1998, 9(6) : 1270-1278.
  • 5LIOTTA L,PETRICOIN E. Molecular profiling of human cancer[ J ]. Nat Rev Genet, 2000,1 ( 1 ) : 48-56.
  • 6JULIER S J, UHLMANN J K,DURRANT-WHYTE H. A new approach for filtering nonlinear systems [ C]//Proceeding of American Control Conference. Seattle, WA:IEEE Computer Society, 1995 : 1628-1632.
  • 7POLLASTRO P, RAMPONE S. HS3D: Homo sapiens splice site data set [ EB/OL ]. [ 2003-06-16 ]. http:// xoomer. virgilio.it/srampone/hs3d2002. pdf.
  • 8POLLASTRO P, RAMPONE S. HS^3D, A dataset of homo splice site regions, and its extraction procedure form a major public database[J]. International Journal of Modern Physics C, 2002,13(8) : 1105-1117.
  • 9CROOKS G E, HON G, CHANDONIA J M, et al. WebLogo: a sequence logo generator [J ]. Genome Research,2004,14(6) :1188-1190.
  • 10BAUER H U, PAVELZIK K R. Quantifying the neighborhood preservation of self-organizing feature maps [ J ]. IEEE Trans Neural Networks, 1992,3(4):570-579.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部