期刊文献+

基于图像精确过分割的虚拟现实场景构建 被引量:2

Virtual reality scene construction based on improved image over-segmentation
下载PDF
导出
摘要 在分析了以往所采用的改进图像过分割方法的基础上,提出了一种新的虚拟场景构建算法。利用单场景建模,把图像分割成超像素,接着为超像素增加类别标志从而形成集群,然后由集群确定几何类别,最后剪切和折叠不同标志的图像,输出三维场景。该算法利用VMRL对一张图片进行建模,在虚拟漫游系统中无需用户直接参与,可以高效地构建虚拟现实场景。 Based on the improved image over-segmentation, a new virtual scene construction algorithm is proposed. Firstly, the image is segmented into several superpixels, and then the superpixels are labeled into constellations, which are specified with geometric characters. At last, the preprocessed image is cut and folded and changed into three dimensional scene. The algorithm uses one image to model, needing no user interference, and can effectively construct the virtual reality scene.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第17期4044-4046,4107,共4页 Computer Engineering and Design
关键词 图像过分割 单场景建模 超像素 场景构建 虚拟现实场景 image over-segmentation single view modeling superpixel scene construction virtual reality scene
  • 相关文献

参考文献9

  • 1HORRY Y, ANJYO K I,ARAI K.Tour into the picture: using a spidery mesh interface to make animation from a single image [J]. ACM SIGGRAPH 97,2007,13(6):225-232.
  • 2Oleksandr Grygorash, Yan Zhou, Zach Jorgensen. Minimum spanning tree based clustering algorithms[C]. 18th IEEE International Conference,2006:73-81.
  • 3ZIEGLER R,MATUSIK W, PFISTER H,et al.3d reconstruction using labeled image regions [J]. Eurographics Symposium on Geometry Processing,2003,8(3):248-259.
  • 4FELZENSZWALB P, HUTTENLOCHER D. Efficient graph- based image segmentation [J]. Int Journal of Computer Vision 59,2004,6(6):167-181.
  • 5OH B M,CHEN M,DORSEY J,et al.Image-based modeling and photo editing [C]. ACM SIGGRAPH 2001. ACM Press, 2002: 433-442.
  • 6Herda L,Fua P, Plaenkers R,et al.Using skeleton-based tracking to increase the reliability of optical motion capture[J]. Human Movement Science Journal,2004,20(3):313-341.
  • 7Silaghi M C,Plankers R,Boulic R, et al.Local and global skeleton fitting techniques for optical motion capture[R]. Modeling and Motion Capture Techniques for Virtual Environments, 2003: 26-40.
  • 8Ribarsky Bill,Rushmeier Holly.3D reconstruction and visualization[J].IEEE Computer Graphics and Applications, 2003,23(6): 20-21.
  • 9Davis Richard I A, Lovell Brian C. Comparing and evaluating HMM ensemble training algorithms using train and test and condition number criteria [J]. Pattern Analysis and Applications, 2004,6(4):327-335.

同被引文献18

  • 1刘思远,李晓峰,吴宏刚,李在铭.FCM与马氏空间约束条件下的快速图像分割技术研究[J].计算机应用研究,2007,24(8):220-222. 被引量:3
  • 2COMANICIU D,MEER P. Mean shift:a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,(05):603-619.
  • 3VINCENT L,SOILLE P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,(06):583-598.doi:10.1109/34.87344.
  • 4SHI J,MALIK J. Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,(08):888-905.doi:10.1109/34.868688.
  • 5LEVINSHTEIN A,STERE A,KUTULAKOS K N. TurboPixels:fast superpixels using geometric flows[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,(12):2290-2297.
  • 6FELZENSZWALB P,HUTTENLOCHER D. Efficient graphbased image segmentation[J].International Journal of Computer Vision,2004,(01):167-181.
  • 7VEDALDI A,SOATTO S. Quick shift and kernel metho ds for mode seeking[A].Marseille,France,2008.705-718.
  • 8LUCCHI A;SMITH K;ACHANTA R.A fully automated approach to segmentation of inregularly shaped cellular structures in EM images[A]北京,201020-24.
  • 9CASELLES V,CATTE F,COLL T. A geometric model for active contours in image processing[J].Numerische Mathematik,1993,(01):1-31.
  • 10MALLADI R,SETHIAN J,VEMURI B. Shape modeling with front propagation:a level set approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,(02):158-175.doi:10.1109/34.368173.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部