期刊文献+

基于概率密度距离的监督特征选择

Supervised feature ranking approach based on probability density interval
下载PDF
导出
摘要 为了降低特征维数,提高分类效率,提出了一种新的基于概率密度距离的有监督的特征排序方法。首先依次对所有样本的某一维特征进行加权变换,然后对变换后的各类别样本进行概率密度估计,计算由该特征加权变换后所引起的各类别样本的类间概率密度距离,距离越大,则该特征对于区分各类别样本的作用越大,以此来对特征进行排序。实验结果表明,该方法是有效的,而且表现出了比经典的Relief-F特征排序方法更好的性能。 In order to reduce dimensionality and improve efficiency, a novel supervised feature ranking approach based on probability density interval is proposed. First one of the dataset' s feature is weighted, then calculate the probability density interval between classes. The most important feature will result the biggest distances between classes. Therefore, probability density interval of inter-class to rank feature is used. Several experimental results demonstrate the effectiveness and the advantage of our approach here over Relief-F.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第17期4067-4069,4091,共4页 Computer Engineering and Design
关键词 特征降维 特征排序 监督特征选择 概率密度距离 Parzen窗口概率密度估计 dimensionality reduction feature selection supervised feature selection probability density interval Parzen probability density estimation
  • 相关文献

参考文献8

  • 1宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 2王晓明,王士同.基于概率密度逼近的无监督特征排序[J].计算机应用研究,2007,24(4):47-51. 被引量:2
  • 3任珂,蔡明,李亚平.基于概率密度距离的无监督特征选择方法[J].计算机工程与设计,2007,28(19):4734-4737. 被引量:1
  • 4Jacek Biesiada, Wlodzislaw Duch. Feature ranking methods based on information entropy with Parzen windows[C]. Katowice, Poland: International Conference on Research in Electrotechnology and Applied Informatics, 2005.
  • 5Torkkola K.Feature extraction by non-parametric mutual information maximization[J]. Journal of Machine Learning Research, 2003,3:1415-1438.
  • 6Newman D J,Hettich S,Blake,et al. UCI Repository of machine learning databases[EB/OL], http://www.ics.uci.edu/-mlearn/ MLRepository.html.
  • 7HSU Chih-wei,CHANG Chih-chung,LIN Chih-jen.A practical guide to support vector classification[EB/OL], http://www. csie. ntu.edu.tw/-cjlin/papers/guide/guide.pdf,2003-08-10/2004- 11-10.
  • 8Dash M,Liu H,Yao J.Dimensionality reduction of unsupervised data[C]. Newport Beach: Proc of 9th IEEE Int Conf Tools with Artifical Intelligence, 1997:532-539.

二级参考文献60

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部